↓ Skip to main content

Bacterial Cell Wall Homeostasis

Overview of attention for book
Cover of 'Bacterial Cell Wall Homeostasis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Bacterial Cell Wall Homeostasis
  3. Altmetric Badge
    Chapter 2 Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure.
  4. Altmetric Badge
    Chapter 3 Bacterial Cell Wall Homeostasis
  5. Altmetric Badge
    Chapter 4 Cell Shaving and False-Positive Control Strategies Coupled to Novel Statistical Tools to Profile Gram-Positive Bacterial Surface Proteomes.
  6. Altmetric Badge
    Chapter 5 Differential Proteomics Based on Multidimensional Protein Identification Technology to Understand the Biogenesis of Outer Membrane of Escherichia coli.
  7. Altmetric Badge
    Chapter 6 Bacterial Cell Wall Homeostasis
  8. Altmetric Badge
    Chapter 7 Zymographic Techniques for the Analysis of Bacterial Cell Wall in Bacillus.
  9. Altmetric Badge
    Chapter 8 Liquid Chromatography-Tandem Mass Spectrometry to Define Sortase Cleavage Products.
  10. Altmetric Badge
    Chapter 9 Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.
  11. Altmetric Badge
    Chapter 10 Bacterial Cell Wall Homeostasis
  12. Altmetric Badge
    Chapter 11 Luciferase Reporter Gene System to Detect Cell Wall Stress Stimulon Induction in Staphylococcus aureus.
  13. Altmetric Badge
    Chapter 12 Bacterial Cell Wall Homeostasis
  14. Altmetric Badge
    Chapter 13 Continuous Fluorescence Assay for Peptidoglycan Glycosyltransferases.
  15. Altmetric Badge
    Chapter 14 Analysis of Peptidoglycan Fragment Release.
  16. Altmetric Badge
    Chapter 15 Bacterial Cell Wall Homeostasis
  17. Altmetric Badge
    Chapter 16 Analysis of Bacterial Cell Surface Chemical Composition Using Cryogenic X-Ray Photoelectron Spectroscopy.
  18. Altmetric Badge
    Chapter 17 Biophysical Measurements of Bacterial Cell Shape.
  19. Altmetric Badge
    Chapter 18 Bacterial Cell Wall Homeostasis
  20. Altmetric Badge
    Chapter 19 Structural Comparison and Simulation of Pneumococcal Peptidoglycan Hydrolase LytB.
Attention for Chapter 16: Analysis of Bacterial Cell Surface Chemical Composition Using Cryogenic X-Ray Photoelectron Spectroscopy.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Analysis of Bacterial Cell Surface Chemical Composition Using Cryogenic X-Ray Photoelectron Spectroscopy.
Chapter number 16
Book title
Bacterial Cell Wall Homeostasis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3676-2_16
Pubmed ID
Book ISBNs
978-1-4939-3674-8, 978-1-4939-3676-2
Authors

Madeleine Ramstedt, Andrey Shchukarev, Ramstedt, Madeleine, Shchukarev, Andrey

Editors

Hee-Jeon Hong

Abstract

This chapter describes a method for measuring the average surface chemical composition with respect to lipids, polysaccharides, and peptides (protein + peptidoglycan) for the outer part of the bacterial cell wall. Bacterial cultures grown over night are washed with a buffer or saline at controlled pH. The analysis is done on fast-frozen bacterial cell pellets obtained after centrifugation, and the analysis requires access to X-ray photoelectron spectroscopy instrumentation that can perform analyses at cryogenic temperatures (for example using liquid nitrogen). The method can be used to monitor changes in the cell wall composition following environmental stimuli or genetic mutations. The data obtained originate from the outermost part of the cell wall. Thus, it is expected that for gram-negative bacteria only the outer membrane and part of the periplasmic peptidoglycan layer is probed during analysis, and for gram-positive bacteria only the top nanometers of the peptidoglycan layer of the cell wall is monitored.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 1 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 100%
Readers by discipline Count As %
Physics and Astronomy 1 100%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2016.
All research outputs
#6,250,129
of 11,229,218 outputs
Outputs from Methods in molecular biology
#1,841
of 7,606 outputs
Outputs of similar age
#140,965
of 318,311 outputs
Outputs of similar age from Methods in molecular biology
#330
of 1,454 outputs
Altmetric has tracked 11,229,218 research outputs across all sources so far. This one is in the 43rd percentile – i.e., 43% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,606 research outputs from this source. They receive a mean Attention Score of 2.0. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,311 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 1,454 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.