↓ Skip to main content

Bacterial Cell Wall Homeostasis

Overview of attention for book
Cover of 'Bacterial Cell Wall Homeostasis'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Bacterial Cell Wall Homeostasis
  3. Altmetric Badge
    Chapter 2 Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure.
  4. Altmetric Badge
    Chapter 3 Bacterial Cell Wall Homeostasis
  5. Altmetric Badge
    Chapter 4 Cell Shaving and False-Positive Control Strategies Coupled to Novel Statistical Tools to Profile Gram-Positive Bacterial Surface Proteomes.
  6. Altmetric Badge
    Chapter 5 Differential Proteomics Based on Multidimensional Protein Identification Technology to Understand the Biogenesis of Outer Membrane of Escherichia coli.
  7. Altmetric Badge
    Chapter 6 Bacterial Cell Wall Homeostasis
  8. Altmetric Badge
    Chapter 7 Zymographic Techniques for the Analysis of Bacterial Cell Wall in Bacillus.
  9. Altmetric Badge
    Chapter 8 Liquid Chromatography-Tandem Mass Spectrometry to Define Sortase Cleavage Products.
  10. Altmetric Badge
    Chapter 9 Genetics and Cell Morphology Analyses of the Actinomyces oris srtA Mutant.
  11. Altmetric Badge
    Chapter 10 Bacterial Cell Wall Homeostasis
  12. Altmetric Badge
    Chapter 11 Luciferase Reporter Gene System to Detect Cell Wall Stress Stimulon Induction in Staphylococcus aureus.
  13. Altmetric Badge
    Chapter 12 Bacterial Cell Wall Homeostasis
  14. Altmetric Badge
    Chapter 13 Continuous Fluorescence Assay for Peptidoglycan Glycosyltransferases.
  15. Altmetric Badge
    Chapter 14 Analysis of Peptidoglycan Fragment Release.
  16. Altmetric Badge
    Chapter 15 Bacterial Cell Wall Homeostasis
  17. Altmetric Badge
    Chapter 16 Analysis of Bacterial Cell Surface Chemical Composition Using Cryogenic X-Ray Photoelectron Spectroscopy.
  18. Altmetric Badge
    Chapter 17 Biophysical Measurements of Bacterial Cell Shape.
  19. Altmetric Badge
    Chapter 18 Bacterial Cell Wall Homeostasis
  20. Altmetric Badge
    Chapter 19 Structural Comparison and Simulation of Pneumococcal Peptidoglycan Hydrolase LytB.
Attention for Chapter 2: Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure.
Altmetric Badge

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Ultra-Sensitive, High-Resolution Liquid Chromatography Methods for the High-Throughput Quantitative Analysis of Bacterial Cell Wall Chemistry and Structure.
Chapter number 2
Book title
Bacterial Cell Wall Homeostasis
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3676-2_2
Pubmed ID
Book ISBNs
978-1-4939-3674-8, 978-1-4939-3676-2
Authors

Laura Alvarez, Sara B. Hernandez, Miguel A. de Pedro, Felipe Cava

Editors

Hee-Jeon Hong

Abstract

High-performance liquid chromatography (HPLC) analysis has been critical for determining the structural and chemical complexity of the cell wall. However this method is very time consuming in terms of sample preparation and chromatographic separation. Here we describe (1) optimized methods for peptidoglycan isolation from both Gram-negative and Gram-positive bacteria that dramatically reduce the sample preparation time, and (2) the application of the fast and highly efficient ultra-performance liquid chromatography (UPLC) technology to muropeptide separation and quantification. The advances in both analytical instrumentation and stationary-phase chemistry have allowed for evolved protocols which cut run time from hours (2-3 h) to minutes (10-20 min), and sample demands by at least one order of magnitude. Furthermore, development of methods based on organic solvents permits in-line mass spectrometry (MS) of the UPLC-resolved muropeptides. Application of these technologies to high-throughput analysis will expedite the better understanding of the cell wall biology.

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 24%
Researcher 5 24%
Student > Doctoral Student 2 10%
Professor 2 10%
Unspecified 1 5%
Other 3 14%
Unknown 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 33%
Biochemistry, Genetics and Molecular Biology 7 33%
Immunology and Microbiology 2 10%
Unspecified 1 5%
Chemistry 1 5%
Other 0 0%
Unknown 3 14%