↓ Skip to main content

Structural features of DNA that determine RNA polymerase II core promoter

Overview of attention for article published in BMC Genomics, November 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Structural features of DNA that determine RNA polymerase II core promoter
Published in
BMC Genomics, November 2016
DOI 10.1186/s12864-016-3292-z
Pubmed ID
Authors

Irina A. Il’icheva, Mingian V. Khodikov, Maria S. Poptsova, Dmitry Yu. Nechipurenko, Yury D. Nechipurenko, Sergei L. Grokhovsky

Abstract

The general structure and action of all eukaryotic and archaeal RNA polymerases machinery have an astonishing similarity despite the diversity of core promoter sequences in different species. The goal of our work is to find common characteristics of DNA region that define it as a promoter for the RNA polymerase II (Pol II). The profiles of a large number of physical and structural characteristics, averaged over representative sets of the Pol II minimal core promoters of the evolutionary divergent species from animals, plants and unicellular fungi were analysed. In addition to the characteristics defined at the base-pair steps, we, for the first time, use profiles of the ultrasonic cleavage and DNase I cleavage indexes, informative for internal properties of each complementary strand. DNA of the core promoters of metazoans and Schizosaccharomyces pombe has similar structural organization. Its mechanical and 3D structural characteristics have singular properties at the positions of TATA-box. The minor groove is broadened and conformational motion is decreased in that region. Special characteristics of conformational behavior are revealed in metazoans at the region, which connects the end of TATA-box and the transcription start site (TSS). The intensities of conformational motions in the complementary strands are periodically changed in opposite phases. They are noticeable, best of all, in mammals. Such conformational features are lacking in the core promoters of S. pombe. The profiles of Saccharomyces cerevisiae core promoters significantly differ: their singular region is shifted down thus pointing to the uniqueness of their structural organization. Obtained results may be useful in genetic engineering for artificial modulation of the promoter strength.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 21%
Researcher 5 17%
Student > Doctoral Student 4 14%
Professor 1 3%
Other 1 3%
Other 2 7%
Unknown 10 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 34%
Agricultural and Biological Sciences 8 28%
Unknown 11 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 September 2017.
All research outputs
#13,999,179
of 22,903,988 outputs
Outputs from BMC Genomics
#5,362
of 10,674 outputs
Outputs of similar age
#218,124
of 415,675 outputs
Outputs of similar age from BMC Genomics
#122
of 248 outputs
Altmetric has tracked 22,903,988 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,674 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 415,675 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.