↓ Skip to main content

Comparison of water-energy trajectories of two major regions experiencing water shortage

Overview of attention for article published in Journal of Environmental Management, October 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (56th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (59th percentile)

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Comparison of water-energy trajectories of two major regions experiencing water shortage
Published in
Journal of Environmental Management, October 2016
DOI 10.1016/j.jenvman.2016.06.068
Pubmed ID
Authors

Ka Leung Lam, Paul A. Lant, Katherine R. O’Brien, Steven J. Kenway

Abstract

Water shortage, increased demand and rising energy costs are major challenges for the water sector worldwide. Here we use a comparative case study to explore the long-term changes in the system-wide water and associated energy use in two different regions that encountered water shortage. In Australia, South East Queensland (SEQ) encountered a drought from 2001 to 2009, while Perth has experienced a decline in rainfall since the 1970s. This novel longitudinal study quantifies and compares the urban water consumption and the energy use of the water supply systems in SEQ and Perth during the period 2002 to 2014. Unlike hypothetical and long-term scenario studies, this comparative study quantifies actual changes in regional water consumption and associated energy, and explores the lessons learned from the two regions. In 2002, Perth had a similar per capita water consumption rate to SEQ and 48% higher per capita energy use in the water supply system. From 2002 to 2014, a strong effort of water conservation can be seen in SEQ during the drought, while Perth has been increasingly relying on seawater desalination. By 2014, even though the drought in SEQ had ended and the drying climate in Perth was continuing, the per capita water consumption in SEQ (266 L/p/d) was still 28% lower than that of Perth (368 L/p/d), while the per capita energy use in Perth (247 kWh/p/yr) had increased to almost five times that of SEQ (53 kWh/p/yr). This comparative study shows that within one decade, major changes in water and associated energy use occurred in regions that were similar historically. The very different "water-energy" trajectories in the two regions arose partly due to the type of water management options implemented, particularly the different emphasis on supply versus demand side management. This study also highlights the significant energy saving benefit of water conservation strategies (i.e. in SEQ, the energy saving was sufficient to offset the total energy use for seawater desalination and water recycling during the period.). The water-energy trajectory diagram provides a new way to illustrate and compare longitudinal water consumption and associated energy use within and between cities.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Russia 1 3%
United States 1 3%
Unknown 34 94%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 25%
Student > Master 8 22%
Student > Bachelor 6 17%
Professor > Associate Professor 4 11%
Researcher 4 11%
Other 5 14%
Readers by discipline Count As %
Environmental Science 10 28%
Unspecified 8 22%
Engineering 6 17%
Chemical Engineering 4 11%
Biochemistry, Genetics and Molecular Biology 2 6%
Other 6 17%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2016.
All research outputs
#6,592,729
of 12,211,426 outputs
Outputs from Journal of Environmental Management
#1,036
of 2,008 outputs
Outputs of similar age
#139,099
of 332,796 outputs
Outputs of similar age from Journal of Environmental Management
#36
of 94 outputs
Altmetric has tracked 12,211,426 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,008 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,796 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.
We're also able to compare this research output to 94 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 59% of its contemporaries.