↓ Skip to main content

Exosomes and Microvesicles

Overview of attention for book
Cover of 'Exosomes and Microvesicles'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Methods to Analyze EVs.
  3. Altmetric Badge
    Chapter 2 Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles.
  4. Altmetric Badge
    Chapter 3 Immuno-characterization of Exosomes Using Nanoparticle Tracking Analysis.
  5. Altmetric Badge
    Chapter 4 Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.
  6. Altmetric Badge
    Chapter 5 Quantitative Analysis of Exosomal miRNA via qPCR and Digital PCR.
  7. Altmetric Badge
    Chapter 6 Small RNA Library Construction for Exosomal RNA from Biological Samples for the Ion Torrent PGM™ and Ion S5™ System.
  8. Altmetric Badge
    Chapter 7 A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration.
  9. Altmetric Badge
    Chapter 8 Multiplexed Phenotyping of Small Extracellular Vesicles Using Protein Microarray (EV Array).
  10. Altmetric Badge
    Chapter 9 Purification and Analysis of Exosomes Released by Mature Cortical Neurons Following Synaptic Activation.
  11. Altmetric Badge
    Chapter 10 A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.
  12. Altmetric Badge
    Chapter 11 Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission.
  13. Altmetric Badge
    Chapter 12 Isolation of Platelet-Derived Extracellular Vesicles.
  14. Altmetric Badge
    Chapter 13 Bioinformatics Tools for Extracellular Vesicles Research.
  15. Altmetric Badge
    Chapter 14 Preparation and Isolation of siRNA-Loaded Extracellular Vesicles.
  16. Altmetric Badge
    Chapter 15 Interaction of Extracellular Vesicles with Endothelial Cells Under Physiological Flow Conditions.
  17. Altmetric Badge
    Chapter 16 Flow Cytometric Analysis of Extracellular Vesicles.
Attention for Chapter 7: A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration.
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
48 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration.
Chapter number 7
Book title
Exosomes and Microvesicles
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6728-5_7
Pubmed ID
Book ISBNs
978-1-4939-6726-1, 978-1-4939-6728-5
Authors

Rong Xu, Richard J. Simpson, David W. Greening, Xu, Rong, Simpson, Richard J., Greening, David W.

Editors

Andrew F Hill

Abstract

Scientific and clinical interest in extracellular vesicles (EVs) has increased rapidly as evidence mounts that they may constitute a new signaling paradigm. Recent studies have highlighted EVs carry preassembled complex biological information that elicit pleiotropic responses in target cells. It is well recognized that cells secrete essentially two EV subtypes that can be partially separated by differential centrifugation (DC): the larger size class (referred to as "microvesicles" or "shed microvesicles," sMVs) is heterogeneous (100-1500 nm), while the smaller size class (referred to as "exosomes") is relatively homogeneous in size (50-150 nm). A key issue hindering progress in understanding underlying mechanisms of EV subtype biogenesis and cargo selectivity has been the technical challenge of isolating homogeneous EV subpopulations suitable for molecular analysis. In this protocol we reveal a novel method for the isolation, purification, and characterization of distinct EV subtypes: exosomes and sMVs. This method, based on sequential centrifugal ultrafiltration (SCUF), affords unbiased isolation of EVs from conditioned medium from a human colon cancer cell model. For both EV subtypes, this protocol details extensive purification and characterization based on dynamic light scattering, cryoelectron microscopy, quantitation, immunoblotting, and comparative label-free proteome profiling. This analytical SCUF method developed is potentially scalable using tangential flow filtration and provides a solid foundation for future in-depth functional studies of EV subtypes from diverse cell types.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 48 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 48 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 27%
Student > Ph. D. Student 11 23%
Researcher 5 10%
Student > Doctoral Student 3 6%
Student > Bachelor 3 6%
Other 6 13%
Unknown 7 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 29%
Agricultural and Biological Sciences 9 19%
Medicine and Dentistry 7 15%
Neuroscience 4 8%
Immunology and Microbiology 2 4%
Other 5 10%
Unknown 7 15%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 February 2018.
All research outputs
#11,102,183
of 12,484,918 outputs
Outputs from Methods in molecular biology
#5,791
of 8,345 outputs
Outputs of similar age
#295,781
of 362,075 outputs
Outputs of similar age from Methods in molecular biology
#1,061
of 1,520 outputs
Altmetric has tracked 12,484,918 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,345 research outputs from this source. They receive a mean Attention Score of 2.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 362,075 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,520 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.