↓ Skip to main content

Exosomes and Microvesicles

Overview of attention for book
Cover of 'Exosomes and Microvesicles'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Methods to Analyze EVs.
  3. Altmetric Badge
    Chapter 2 Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles.
  4. Altmetric Badge
    Chapter 3 Immuno-characterization of Exosomes Using Nanoparticle Tracking Analysis.
  5. Altmetric Badge
    Chapter 4 Imaging and Quantification of Extracellular Vesicles by Transmission Electron Microscopy.
  6. Altmetric Badge
    Chapter 5 Quantitative Analysis of Exosomal miRNA via qPCR and Digital PCR.
  7. Altmetric Badge
    Chapter 6 Small RNA Library Construction for Exosomal RNA from Biological Samples for the Ion Torrent PGM™ and Ion S5™ System.
  8. Altmetric Badge
    Chapter 7 A Protocol for Isolation and Proteomic Characterization of Distinct Extracellular Vesicle Subtypes by Sequential Centrifugal Ultrafiltration.
  9. Altmetric Badge
    Chapter 8 Multiplexed Phenotyping of Small Extracellular Vesicles Using Protein Microarray (EV Array).
  10. Altmetric Badge
    Chapter 9 Purification and Analysis of Exosomes Released by Mature Cortical Neurons Following Synaptic Activation.
  11. Altmetric Badge
    Chapter 10 A Method for Isolation of Extracellular Vesicles and Characterization of Exosomes from Brain Extracellular Space.
  12. Altmetric Badge
    Chapter 11 Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission.
  13. Altmetric Badge
    Chapter 12 Isolation of Platelet-Derived Extracellular Vesicles.
  14. Altmetric Badge
    Chapter 13 Bioinformatics Tools for Extracellular Vesicles Research.
  15. Altmetric Badge
    Chapter 14 Preparation and Isolation of siRNA-Loaded Extracellular Vesicles.
  16. Altmetric Badge
    Chapter 15 Interaction of Extracellular Vesicles with Endothelial Cells Under Physiological Flow Conditions.
  17. Altmetric Badge
    Chapter 16 Flow Cytometric Analysis of Extracellular Vesicles.
Attention for Chapter 11: Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission.
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Isolation of Exosomes and Microvesicles from Cell Culture Systems to Study Prion Transmission.
Chapter number 11
Book title
Exosomes and Microvesicles
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6728-5_11
Pubmed ID
Book ISBNs
978-1-4939-6726-1, 978-1-4939-6728-5
Authors

Pascal Leblanc, Zaira E. Arellano-Anaya, Emilien Bernard, Laure Gallay, Monique Provansal, Sylvain Lehmann, Laurent Schaeffer, Graça Raposo, Didier Vilette

Editors

Andrew F Hill

Abstract

Extracellular vesicles (EVs) are composed of microvesicles and exosomes. Exosomes are small membrane vesicles (40-120 nm sized) of endosomal origin released in the extracellular medium from cells when multivesicular bodies fuse with the plasma membrane, whereas microvesicles (i.e., shedding vesicles, 100 nm to 1 μm sized) bud from the plasma membrane. Exosomes and microvesicles carry functional proteins and nucleic acids (especially mRNAs and microRNAs) that can be transferred to surrounding cells and tissues and can impact multiple dimensions of the cellular life. Most of the cells, if not all, from neuronal to immune cells, release exosomes and microvesicles in the extracellular medium, and all biological fluids including blood (serum/plasma), urine, cerebrospinal fluid, and saliva contain EVs.Prion-infected cultured cells are known to secrete infectivity into their environment. We characterized this cell-free form of prions and showed that infectivity was associated with exosomes. Since exosomes are produced by a variety of cells, including cells that actively accumulate prions, they could be a vehicle for infectivity in body fluids and could participate to the dissemination of prions in the organism. In addition, such infectious exosomes also represent a natural, simple, biological material to get key information on the abnormal PrP forms associated with infectivity.In this chapter, we describe first a method that allows exosomes and microvesicles isolation from prion-infected cell cultures and in a second time the strategies to characterize the prions containing exosomes and their ability to disseminate the prion agent.

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 6 22%
Student > Bachelor 5 19%
Researcher 4 15%
Student > Master 4 15%
Student > Ph. D. Student 2 7%
Other 2 7%
Unknown 4 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 22%
Biochemistry, Genetics and Molecular Biology 6 22%
Neuroscience 4 15%
Medicine and Dentistry 3 11%
Immunology and Microbiology 1 4%
Other 2 7%
Unknown 5 19%