↓ Skip to main content

A structural role for the PHP domain in E. coli DNA polymerase III

Overview of attention for article published in BMC Molecular and Cell Biology, May 2013
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
62 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A structural role for the PHP domain in E. coli DNA polymerase III
Published in
BMC Molecular and Cell Biology, May 2013
DOI 10.1186/1472-6807-13-8
Pubmed ID
Authors

Tiago Barros, Joel Guenther, Brian Kelch, Jordan Anaya, Arjun Prabhakar, Mike O’Donnell, John Kuriyan, Meindert H Lamers

Abstract

In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 62 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 61 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 26%
Researcher 9 15%
Student > Master 8 13%
Student > Postgraduate 5 8%
Student > Bachelor 5 8%
Other 9 15%
Unknown 10 16%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 34%
Agricultural and Biological Sciences 20 32%
Chemistry 5 8%
Computer Science 2 3%
Medicine and Dentistry 2 3%
Other 1 2%
Unknown 11 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 June 2013.
All research outputs
#4,618,644
of 25,373,627 outputs
Outputs from BMC Molecular and Cell Biology
#101
of 1,233 outputs
Outputs of similar age
#37,738
of 205,982 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#4
of 19 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 205,982 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.