↓ Skip to main content

mTOR

Overview of attention for book
Cover of 'mTOR'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life.
  3. Altmetric Badge
    Chapter 2 Biochemical and Pharmacological Inhibition of mTOR by Rapamycin and an ATP-Competitive mTOR Inhibitor.
  4. Altmetric Badge
    Chapter 3 Evaluation of the Nutrient-Sensing mTOR Pathway.
  5. Altmetric Badge
    Chapter 4 mTOR Activity Under Hypoxia.
  6. Altmetric Badge
    Chapter 5 Isolation of the mTOR Complexes by Affinity Purification.
  7. Altmetric Badge
    Chapter 6 An In Vitro Assay for the Kinase Activity of mTOR Complex 2
  8. Altmetric Badge
    Chapter 7 Overexpression or Downregulation of mTOR in Mammalian Cells.
  9. Altmetric Badge
    Chapter 8 Detection of Cytoplasmic and Nuclear Functions of mTOR by Fractionation.
  10. Altmetric Badge
    Chapter 9 Evaluation of rapamycin-induced cell death.
  11. Altmetric Badge
    Chapter 10 Evaluation of mTOR-Regulated mRNA Translation
  12. Altmetric Badge
    Chapter 11 A Genome-wide RNAi Screen for Polypeptides that Alter rpS6 Phosphorylation.
  13. Altmetric Badge
    Chapter 12 Immunohistochemical Analysis of mTOR Activity in Tissues.
  14. Altmetric Badge
    Chapter 13 Assessing Cell Size and Cell Cycle Regulation in Cells with Altered TOR Activity.
  15. Altmetric Badge
    Chapter 14 Quantitative Visualization of Autophagy Induction by mTOR Inhibitors.
  16. Altmetric Badge
    Chapter 15 The In Vivo Evaluation of Active-Site TOR Inhibitors in Models of BCR-ABL+ Leukemia.
  17. Altmetric Badge
    Chapter 16 Inducible raptor and rictor Knockout Mouse Embryonic Fibroblasts.
  18. Altmetric Badge
    Chapter 17 Expanding Human T Regulatory Cells with the mTOR-Inhibitor Rapamycin.
  19. Altmetric Badge
    Chapter 18 Rapamycin-induced enhancement of vaccine efficacy in mice.
  20. Altmetric Badge
    Chapter 19 Utilizing a Retroviral RNAi System to Investigate In Vivo mTOR Functions in T Cells.
  21. Altmetric Badge
    Chapter 20 Exploring Functional In Vivo Consequences of the Selective Genetic Ablation of mTOR Signaling in T Helper Lymphocytes.
  22. Altmetric Badge
    Chapter 21 Evaluating the Therapeutic Potential of mTOR Inhibitors Using Mouse Genetics.
  23. Altmetric Badge
    Chapter 22 Inhibition of PI3K-Akt-mTOR Signaling in Glioblastoma by mTORC1/2 Inhibitors.
  24. Altmetric Badge
    Chapter 23 Assessing the Function of mTOR in Human Embryonic Stem Cells.
  25. Altmetric Badge
    Chapter 24 Video-EEG Monitoring Methods for Characterizing Rodent Models of Tuberous Sclerosis and Epilepsy.
  26. Altmetric Badge
    Chapter 25 A Genetic Model to Dissect the Role of Tsc-mTORC1 in Neuronal Cultures.
  27. Altmetric Badge
    Chapter 26 Tissue-specific ablation of tsc1 in pancreatic Beta-cells.
  28. Altmetric Badge
    Chapter 27 A Mouse Model of Diet-Induced Obesity and Insulin Resistance
  29. Altmetric Badge
    Chapter 28 Rapamycin as immunosuppressant in murine transplantation model.
  30. Altmetric Badge
    Chapter 29 Development of ATP-Competitive mTOR Inhibitors.
Attention for Chapter 9: Evaluation of rapamycin-induced cell death.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
58 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Evaluation of rapamycin-induced cell death.
Chapter number 9
Book title
mTOR
Published in
Methods in molecular biology, September 2011
DOI 10.1007/978-1-61779-430-8_9
Pubmed ID
Book ISBNs
978-1-61779-429-2, 978-1-61779-430-8
Authors

Lorenzo Galluzzi, Eugenia Morselli, Oliver Kepp, Ilio Vitale, Aména Ben Younes, Maria Chiara Maiuri, Guido Kroemer, Galluzzi, Lorenzo, Morselli, Eugenia, Kepp, Oliver, Vitale, Ilio, Younes, Aména Ben, Maiuri, Maria Chiara, Kroemer, Guido

Editors

Thomas Weichhart

Abstract

Mammalian target of rapamycin (mTOR) is an evolutionarily conserved kinase that integrates signals from nutrients and growth factors for the coordinate regulation of many cellular processes, including proliferation and cell death. Constitutive mTOR signaling characterizes multiple human malignancies, and pharmacological inhibitors of mTOR such as the immunosuppressant rapamycin and some of its nonimmunosuppressive derivatives not only have been ascribed with promising anticancer properties in vitro and in vivo but are also being extensively evaluated in clinical trials. mTOR inhibition rapidly leads to the activation of autophagy, which most often exerts prosurvival effects, although in some cases it accompanies cell death. Thus, depending on the specific experimental setting (cell type, concentration, stimulation time, and presence of concurrent stimuli), rapamycin can activate/favor a wide spectrum of cellular responses/phenotypes, ranging from adaptation to stress and survival to cell death. The (at least partial) overlap among the biochemical and morphological responses triggered by rapamycin considerably complicates the study of cell death-associated variables. Moreover, rapamycin presumably triggers acute cell death mainly via off-target mechanisms. Here, we describe a set of assays that can be employed for the routine quantification of rapamycin-induced cell death in vitro, as well as a set of guidelines that should be applied for their correct interpretation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 58 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 3%
Unknown 56 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 22%
Researcher 13 22%
Student > Bachelor 8 14%
Student > Master 4 7%
Student > Doctoral Student 3 5%
Other 11 19%
Unknown 6 10%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 36%
Agricultural and Biological Sciences 15 26%
Medicine and Dentistry 7 12%
Immunology and Microbiology 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 7%
Unknown 6 10%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 November 2011.
All research outputs
#18,301,870
of 22,659,164 outputs
Outputs from Methods in molecular biology
#7,806
of 13,019 outputs
Outputs of similar age
#109,604
of 131,786 outputs
Outputs of similar age from Methods in molecular biology
#25
of 49 outputs
Altmetric has tracked 22,659,164 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,019 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 131,786 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one is in the 10th percentile – i.e., 10% of its contemporaries scored the same or lower than it.