Title |
Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations
|
---|---|
Published in |
Nature Medicine, May 2023
|
DOI | 10.1038/s41591-023-02325-4 |
Pubmed ID | |
Authors |
Dimitrios Doudesis, Kuan Ken Lee, Jasper Boeddinghaus, Anda Bularga, Amy V. Ferry, Chris Tuck, Matthew T. H. Lowry, Pedro Lopez-Ayala, Thomas Nestelberger, Luca Koechlin, Miguel O. Bernabeu, Lis Neubeck, Atul Anand, Karen Schulz, Fred S. Apple, William Parsonage, Jaimi H. Greenslade, Louise Cullen, John W. Pickering, Martin P. Than, Alasdair Gray, Christian Mueller, Nicholas L. Mills, A. Mark Richards, Chris Pemberton, Richard W. Troughton, Sally J. Aldous, Anthony F. T. Brown, Emily Dalton, Chris Hammett, Tracey Hawkins, Shanen O’Kane, Kate Parke, Kimberley Ryan, Jessica Schluter, Karin Wild, Desiree Wussler, Òscar Miró, F. Javier Martin-Sanchez, Dagmar I. Keller, Michael Christ, Andreas Buser, Maria Rubini Giménez, Stephanie Barker, Jennifer Blades, Andrew R. Chapman, Takeshi Fujisawa, Dorien M. Kimenai, Jeremy Leung, Ziwen Li, Michael McDermott, David E. Newby, Stacey D. Schulberg, Anoop S. V. Shah, Andrew Sorbie, Grace Soutar, Fiona E. Strachan, Caelan Taggart, Daniel Perez Vicencio, Yiqing Wang, Ryan Wereski, Kelly Williams, Christopher J. Weir, Colin Berry, Alan Reid, Donogh Maguire, Paul O. Collinson, Yader Sandoval, Stephen W. Smith |
Twitter Demographics
Geographical breakdown
Country | Count | As % |
---|---|---|
United Kingdom | 35 | 21% |
United States | 27 | 17% |
Canada | 4 | 2% |
Venezuela, Bolivarian Republic of | 3 | 2% |
France | 3 | 2% |
Switzerland | 3 | 2% |
Netherlands | 2 | 1% |
Germany | 2 | 1% |
Spain | 2 | 1% |
Other | 13 | 8% |
Unknown | 69 | 42% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Members of the public | 92 | 56% |
Scientists | 44 | 27% |
Practitioners (doctors, other healthcare professionals) | 21 | 13% |
Science communicators (journalists, bloggers, editors) | 6 | 4% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 29 | 100% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Unspecified | 4 | 14% |
Student > Ph. D. Student | 4 | 14% |
Student > Master | 3 | 10% |
Student > Bachelor | 2 | 7% |
Researcher | 2 | 7% |
Other | 7 | 24% |
Unknown | 7 | 24% |
Readers by discipline | Count | As % |
---|---|---|
Medicine and Dentistry | 7 | 24% |
Unspecified | 5 | 17% |
Biochemistry, Genetics and Molecular Biology | 3 | 10% |
Social Sciences | 2 | 7% |
Mathematics | 1 | 3% |
Other | 4 | 14% |
Unknown | 7 | 24% |