↓ Skip to main content

Exploring the oxidative stress response mechanism triggered by environmental water samples

Overview of attention for article published in Environmental Science: Processes & Impacts, December 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
7 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
6 Mendeley
Title
Exploring the oxidative stress response mechanism triggered by environmental water samples
Published in
Environmental Science: Processes & Impacts, December 2016
DOI 10.1039/c6em00541a
Pubmed ID
Authors

Peta A. Neale, Maud E. S. Achard, Beate I. Escher, Frederic D. L. Leusch

Abstract

Environmental waters can contain a wide range of micropollutants. Bioanalytical test batteries using assays indicative of different stages of cellular toxicity pathways, such as adaptive stress responses, have been applied to a range of water samples. Oxidative stress response assays have proven to be sensitive tools, but the mechanism by which water samples are inducing the oxidative stress response remains unclear because both electrophiles and reactive oxygen species (ROS) may activate the Nrf2-antioxidant response element (ARE) pathway. The current study aimed to explore the underlying mechanisms of the oxidative stress response triggered by exposure to surface water extracts previously shown to be active in the ARE GeneBLAzer oxidative stress response assay. ROS formation and changes in glutathione (GSH) concentration were assessed in human liver cells exposed to water extracts from a large river in addition to individual chemicals that were detected in these water extracts and reported to be active in the ARE GeneBLAzer assay in a previous study. Many of the surface water samples induced ROS formation and decreased the GSH to glutathione disulfide (GSSG) ratio, suggesting that the formation of ROS is an important mechanism. However, some of the most responsive samples in the ARE GeneBLAzer assay, as well as the individual chemicals, did not have a significant effect on either ROS formation or the GSH/GSSG ratio, suggesting a different mechanism. Antioxidants can also induce the Nrf2-ARE pathway and the ARE GeneBLAzer assay may also detect compounds that activate ARE by Nrf2-independent mechanisms, thus further research is required to characterise active chemicals in oxidative stress response assays. However, these tests are still useful for quantifying the integrated cellular response to multiple molecular initiating events and can be used complementary to assays indicative of specific effects, such as receptor-mediated assays.

Twitter Demographics

The data shown below were collected from the profiles of 7 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Professor 3 50%
Researcher 3 50%
Student > Ph. D. Student 2 33%
Student > Bachelor 1 17%
Student > Master 1 17%
Other 0 0%
Readers by discipline Count As %
Environmental Science 4 67%
Agricultural and Biological Sciences 3 50%
Biochemistry, Genetics and Molecular Biology 1 17%
Unspecified 1 17%
Engineering 1 17%
Other 0 0%

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2017.
All research outputs
#3,000,434
of 12,359,325 outputs
Outputs from Environmental Science: Processes & Impacts
#101
of 507 outputs
Outputs of similar age
#96,399
of 339,456 outputs
Outputs of similar age from Environmental Science: Processes & Impacts
#4
of 12 outputs
Altmetric has tracked 12,359,325 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 507 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,456 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.