↓ Skip to main content

Pharmacological and therapeutic directions in ADHD: Specificity in the PFC

Overview of attention for article published in Behavioral and Brain Functions, February 2008
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
96 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pharmacological and therapeutic directions in ADHD: Specificity in the PFC
Published in
Behavioral and Brain Functions, February 2008
DOI 10.1186/1744-9081-4-12
Pubmed ID
Authors

Florence Levy

Abstract

Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA) are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC) and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA) stimulation (through DAT transporter inhibition) decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists) increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC), and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance and motor impulsivity, depending on dose levels, while atomoxetine may have effects on attention, anxiety, social affect, and sedation via noradrenergic transmission. At a theoretical level, the advent of possible specific alpha-2A noradrenergic therapies has posed the question of the role of working memory in ADHD. Head to head comparisons of stimulant and noradrenergic alpha-2A, alpha-2B and alpha-2C agonists, utilizing vigilance and affective measures should help to clarify pharmacological and therapeutic differences.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 96 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
Mexico 1 1%
France 1 1%
Unknown 92 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 20%
Student > Master 14 15%
Researcher 12 13%
Student > Bachelor 10 10%
Student > Doctoral Student 10 10%
Other 22 23%
Unknown 9 9%
Readers by discipline Count As %
Psychology 25 26%
Medicine and Dentistry 17 18%
Neuroscience 17 18%
Agricultural and Biological Sciences 13 14%
Nursing and Health Professions 3 3%
Other 10 10%
Unknown 11 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 May 2013.
All research outputs
#22,756,649
of 25,371,288 outputs
Outputs from Behavioral and Brain Functions
#362
of 417 outputs
Outputs of similar age
#91,703
of 95,139 outputs
Outputs of similar age from Behavioral and Brain Functions
#5
of 7 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 417 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 95,139 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.