↓ Skip to main content

The basic reproductive ratio of Barbour’s two-host schistosomiasis model with seasonal fluctuations

Overview of attention for article published in Parasites & Vectors, January 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The basic reproductive ratio of Barbour’s two-host schistosomiasis model with seasonal fluctuations
Published in
Parasites & Vectors, January 2017
DOI 10.1186/s13071-017-1983-1
Pubmed ID
Authors

Shu-Jing Gao, Hua-Hua Cao, Yu-Ying He, Yu-Jiang Liu, Xiang-Yu Zhang, Guo-Jing Yang, Xiao-Nong Zhou

Abstract

Motivated by the first mathematical model for schistosomiasis proposed by Macdonald and Barbour's classical schistosomiasis model tracking the dynamics of infected human population and infected snail hosts in a community, in our previous study, we incorporated seasonal fluctuations into Barbour's model, but ignored the effect of bovine reservoir host in the transmission of schistosomiasis. Inspired by the findings from our previous work, the model was further improved by integrating two definitive hosts (human and bovine) and seasonal fluctuations, so as to understand the transmission dynamics of schistosomiasis japonica and evaluate the ongoing control measures in Liaonan village, Xingzi County, Jiangxi Province. The basic reproductive ratio R 0 and its computation formulae were derived by using the operator theory in functional analysis and the monodromy matrix theory. The mathematical methods for global dynamics of periodic systems were used in order to show that R 0 serves as a threshold value that determines whether there was disease outbreak or not. The parameter fitting and the ratio calculation were performed with surveillance data obtained from the village of Liaonan using numerical simulation. Sensitivity analysis was carried out in order to understand the impact of R 0 on seasonal fluctuations and snail host control. The modified basic reproductive ratios were compared with known results to illustrate the infection risk. The Barbour's two-host model with seasonal fluctuations was proposed. The implicit expression of R 0 for the model was given by the spectral radius of next infection operator. The R 0 s for the model ranged between 1.030 and 1.097 from 2003 to 2010 in the village of Liaonan, Xingzi County, China, with 1.097 recorded as the maximum value in 2005 but declined dramatically afterwards. In addition, we proved that the disease goes into extinction when R 0 is less than one and persists when R 0 is greater than one. Comparisons of the different improved models were also made. Based on the mechanism and characteristics of schistosomiasis transmission, Barbour's model was improved by considering seasonality. The implicit formula of R 0 for the model and its calculation were given. Theoretical results showed that R 0 gave a sharp threshold that determines whether the disease dies out or not. Simulations concluded that: (i) ignoring seasonality would overestimate the transmission risk of schistosomiasis, and (ii) mollusiciding is an effective control measure to curtail schistosomiasis transmission in Xingzi County when the removal rate of infected snails is small.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Student > Master 3 23%
Researcher 1 8%
Unknown 6 46%
Readers by discipline Count As %
Mathematics 3 23%
Environmental Science 1 8%
Agricultural and Biological Sciences 1 8%
Medicine and Dentistry 1 8%
Unknown 7 54%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2018.
All research outputs
#17,870,599
of 22,947,506 outputs
Outputs from Parasites & Vectors
#3,837
of 5,482 outputs
Outputs of similar age
#292,755
of 419,016 outputs
Outputs of similar age from Parasites & Vectors
#75
of 122 outputs
Altmetric has tracked 22,947,506 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,482 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 22nd percentile – i.e., 22% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,016 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 122 others from the same source and published within six weeks on either side of this one. This one is in the 26th percentile – i.e., 26% of its contemporaries scored the same or lower than it.