↓ Skip to main content

Exercise for hand osteoarthritis

Overview of attention for article published in Cochrane database of systematic reviews, January 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

twitter
79 tweeters
facebook
1 Facebook page
wikipedia
1 Wikipedia page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
1 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise for hand osteoarthritis
Published in
Cochrane database of systematic reviews, January 2017
DOI 10.1002/14651858.cd010388.pub2
Pubmed ID
Authors

Nina Østerås, Ingvild Kjeken, Geir Smedslund, Rikke H Moe, Barbara Slatkowsky-Christensen, Till Uhlig, Kåre Birger Hagen

Abstract

Hand osteoarthritis (OA) is a prevalent joint disease that may lead to pain, stiffness and problems in performing hand-related activities of daily living. Currently, no cure for OA is known, and non-pharmacological modalities are recommended as first-line care. A positive effect of exercise in hip and knee OA has been documented, but the effect of exercise on hand OA remains uncertain. To assess the benefits and harms of exercise compared with other interventions, including placebo or no intervention, in people with hand OA. Main outcomes are hand pain and hand function. We searched six electronic databases up until September 2015. All randomised and controlled clinical trials comparing therapeutic exercise versus no exercise or comparing different exercise programmes. Two review authors independently selected trials, extracted data, assessed risk of bias and assessed the quality of the body of evidence using the GRADE approach. Outcomes consisted of both continuous (hand pain, physical function, finger joint stiffness and quality of life) and dichotomous outcomes (proportions of adverse events and withdrawals). We included seven studies in the review. Most studies were free from selection and reporting bias, but one study was available only as a congress abstract. It was not possible to blind participants to treatment allocation, and although most studies reported blinded outcome assessors, some outcomes (pain, function, stiffness and quality of life) were self-reported. The results may be vulnerable to performance and detection bias owing to unblinded participants and self-reported outcomes. Two studies with high drop-out rates may be vulnerable to attrition bias. We downgraded the overall quality of the body of evidence to low owing to potential detection bias (lack of blinding of participants on self-reported outcomes) and imprecision (studies were few, the number of participants was limited and confidence intervals were wide for the outcomes pain, function and joint stiffness). For quality of life, adverse events and withdrawals due to adverse events, we further downgraded the overall quality of the body of evidence to very low because studies were very few and confidence intervals were very wide.Low-quality evidence from five trials (381 participants) indicated that exercise reduced hand pain (standardised mean difference (SMD) -0.27, 95% confidence interval (CI) -0.47 to -0.07) post intervention. The absolute reduction in pain for the exercise group, compared with the control group, was 5% (1% to 9%) on a 0 to 10 point scale. Pain was estimated to be 3.9 points on this scale (0 = no pain) in the control group, and exercise reduced pain by 0.5 points (95% CI 0.1 to 0.9; number needed to treat for an additional beneficial outcome (NNTB) 9).Four studies (369 participants) indicated that exercise improved hand function (SMD -0.28, 95% CI -0.58 to 0.02) post intervention. The absolute improvement in function noted in the exercise group, compared with the control group, was 6% (0.4% worsening to 13% improvement). Function was estimated at 14.5 points on a 0 to 36 point scale (0 = no physical disability) in the control group, and exercise improved function by 2.2 points (95% CI -0.2 to 4.6; NNTB 9).One study (113 participants) evaluated quality of life, and the effect of exercise on quality of life is currently uncertain (mean difference (MD) 0.30, 95% CI -3.72 to 4.32). The absolute improvement in quality of life for the exercise group, compared with the control group, was 0.3% (4% worsening to 4% improvement). Quality of life was 50.4 points on a 0 to 100 point scale (100 = maximum quality of life) in the control group, and the mean score in the exercise group was 0.3 points higher (3.5 points lower to 4.1 points higher).Four studies (369 participants) indicated that exercise reduced finger joint stiffness (SMD -0.36, 95% CI -0.58 to -0.15) post intervention. The absolute reduction in finger joint stiffness for the exercise group, compared with the control group, was 7% (3% to 10%). Finger joint stiffness was estimated at 4.5 points on a 0 to 10 point scale (0 = no stiffness) in the control group, and exercise improved stiffness by 0.7 points (95% CI 0.3 to 1.0; NNTB 7).Three studies reported intervention-related adverse events and withdrawals due to adverse events. The few reported adverse events consisted of increased finger joint inflammation and hand pain. Low-quality evidence from the three studies showed an increased likelihood of adverse events (risk ratio (RR) 4.55, 95% CI 0.53 to 39.31) and of withdrawals due to adverse events in the exercise group compared with the control group (RR 2.88, 95% CI 0.30 to 27.18), but the effect is uncertain and further research may change the estimates.Included studies did not measure radiographic joint structure changes. Two studies provided six-month follow-up data (220 participants), and one (102 participants) provided 12-month follow-up data. The positive effect of exercise on pain, function and joint stiffness was not sustained at medium- and long-term follow-up.The exercise intervention varied largely in terms of dosage, content and number of supervised sessions. Participants were instructed to exercise two to three times a week in four studies, daily in two studies and three to four times daily in another study. Exercise interventions in all seven studies aimed to improve muscle strength and joint stability or function, but the numbers and types of exercises varied largely across studies. Four studies reported adherence to the exercise programme; in three studies, this was self-reported. Self-reported adherence to the recommended frequency of exercise sessions ranged between 78% and 94%. In the fourth study, 67% fulfilled at least 16 of the 18 scheduled exercise sessions. When we pooled results from five studies, we found low-quality evidence showing small beneficial effects of exercise on hand pain, function and finger joint stiffness. Estimated effect sizes were small, and whether they represent a clinically important change may be debated. One study reported quality of life, and the effect is uncertain. Three studies reported on adverse events, which were very few and were not severe.

Twitter Demographics

The data shown below were collected from the profiles of 79 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 1 Mendeley reader of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Switzerland 1 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 44 4400%
Student > Bachelor 39 3900%
Student > Ph. D. Student 26 2600%
Unspecified 23 2300%
Student > Postgraduate 17 1700%
Other 40 4000%
Readers by discipline Count As %
Medicine and Dentistry 88 8800%
Unspecified 32 3200%
Nursing and Health Professions 29 2900%
Psychology 10 1000%
Agricultural and Biological Sciences 8 800%
Other 22 2200%

Attention Score in Context

This research output has an Altmetric Attention Score of 51. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 July 2019.
All research outputs
#346,677
of 13,640,858 outputs
Outputs from Cochrane database of systematic reviews
#940
of 10,695 outputs
Outputs of similar age
#14,215
of 346,738 outputs
Outputs of similar age from Cochrane database of systematic reviews
#32
of 212 outputs
Altmetric has tracked 13,640,858 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,695 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.1. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 346,738 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 212 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.