↓ Skip to main content

A probabilistic approach to modelling ultrasonic shear wave propagation in locally anisotropic heterogeneous media

Overview of attention for article published in Waves in Random and Complex Media, April 2024
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)

Mentioned by

news
9 news outlets
twitter
3 X users

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A probabilistic approach to modelling ultrasonic shear wave propagation in locally anisotropic heterogeneous media
Published in
Waves in Random and Complex Media, April 2024
DOI 10.1080/17455030.2024.2341283
Authors

Alistair S. Ferguson, Katherine M. M. Tant, Mohammud Foodun, Anthony J. Mulholland

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 1 50%
Unknown 1 50%
Readers by discipline Count As %
Unspecified 1 50%
Unknown 1 50%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 66. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 April 2024.
All research outputs
#670,437
of 25,978,998 outputs
Outputs from Waves in Random and Complex Media
#1
of 70 outputs
Outputs of similar age
#8,401
of 278,597 outputs
Outputs of similar age from Waves in Random and Complex Media
#1
of 1 outputs
Altmetric has tracked 25,978,998 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 70 research outputs from this source. They receive a mean Attention Score of 2.3. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,597 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them