↓ Skip to main content

Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth

Overview of attention for article published in Neuroscience Letters, February 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth
Published in
Neuroscience Letters, February 2017
DOI 10.1016/j.neulet.2017.02.013
Pubmed ID
Authors

Shane V. Hegarty, Aideen M. Sullivan, Gerard W. O’Keeffe

Abstract

Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 5 22%
Student > Bachelor 4 17%
Student > Master 3 13%
Lecturer 2 9%
Professor 2 9%
Other 4 17%
Unknown 3 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 22%
Agricultural and Biological Sciences 4 17%
Neuroscience 4 17%
Medicine and Dentistry 2 9%
Materials Science 1 4%
Other 1 4%
Unknown 6 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2017.
All research outputs
#8,476,767
of 25,382,440 outputs
Outputs from Neuroscience Letters
#2,291
of 7,756 outputs
Outputs of similar age
#148,592
of 424,548 outputs
Outputs of similar age from Neuroscience Letters
#43
of 102 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 7,756 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.1. This one has gotten more attention than average, scoring higher than 70% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 424,548 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 102 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.