↓ Skip to main content

DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis

Overview of attention for article published in Clinical Epigenetics, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
69 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
DNA methylation at modifier genes of lung disease severity is altered in cystic fibrosis
Published in
Clinical Epigenetics, February 2017
DOI 10.1186/s13148-016-0300-8
Pubmed ID
Authors

Milena Magalhães, Isabelle Rivals, Mireille Claustres, Jessica Varilh, Mélodie Thomasset, Anne Bergougnoux, Laurent Mely, Sylvie Leroy, Harriet Corvol, Loïc Guillot, Marlène Murris, Emmanuelle Beyne, Davide Caimmi, Isabelle Vachier, Raphaël Chiron, Albertina De Sario

Abstract

Lung disease progression is variable among cystic fibrosis (CF) patients and depends on DNA mutations in the CFTR gene, polymorphic variations in disease modifier genes, and environmental exposure. The contribution of genetic factors has been extensively investigated, whereas the mechanism whereby environmental factors modulate the lung disease is unknown. In this project, we hypothesized that (i) reiterative stress alters the epigenome in CF-affected tissues and (ii) DNA methylation variations at disease modifier genes modulate the lung function in CF patients. We profiled DNA methylation at CFTR, the disease-causing gene, and at 13 lung modifier genes in nasal epithelial cells and whole blood samples from 48 CF patients and 24 healthy controls. CF patients homozygous for the p.Phe508del mutation and ≥18-year-old were stratified according to the lung disease severity. DNA methylation was measured by bisulfite and next-generation sequencing. The DNA methylation profile allowed us to correctly classify 75% of the subjects, thus providing a CF-specific molecular signature. Moreover, in CF patients, DNA methylation at specific genes was highly correlated in the same tissue sample. We suggest that gene methylation in CF cells may be co-regulated by disease-specific trans-factors. Three genes were differentially methylated in CF patients compared with controls and/or in groups of pulmonary severity: HMOX1 and GSTM3 in nasal epithelial samples; HMOX1 and EDNRA in blood samples. The association between pulmonary severity and DNA methylation at EDNRA was confirmed in blood samples from an independent set of CF patients. Also, lower DNA methylation levels at GSTM3 were associated with the GSTM3*B allele, a polymorphic 3-bp deletion that has a protective effect in cystic fibrosis. DNA methylation levels are altered in nasal epithelial and blood cell samples from CF patients. Analysis of CFTR and 13 lung disease modifier genes shows DNA methylation changes of small magnitude: some of them are a consequence of the disease; other changes may result in small expression variations that collectively modulate the lung disease severity.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 69 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 20%
Researcher 10 14%
Student > Ph. D. Student 7 10%
Student > Bachelor 7 10%
Professor 4 6%
Other 10 14%
Unknown 17 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 19%
Agricultural and Biological Sciences 9 13%
Medicine and Dentistry 5 7%
Nursing and Health Professions 4 6%
Pharmacology, Toxicology and Pharmaceutical Science 4 6%
Other 15 22%
Unknown 19 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 December 2017.
All research outputs
#14,331,382
of 22,953,506 outputs
Outputs from Clinical Epigenetics
#745
of 1,260 outputs
Outputs of similar age
#233,271
of 428,391 outputs
Outputs of similar age from Clinical Epigenetics
#9
of 24 outputs
Altmetric has tracked 22,953,506 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,260 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.5. This one is in the 37th percentile – i.e., 37% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 428,391 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.