↓ Skip to main content

Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data

Overview of attention for article published in Journal of Cheminformatics, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
5 X users

Citations

dimensions_citation
49 Dimensions

Readers on

mendeley
63 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Nontargeted homologue series extraction from hyphenated high resolution mass spectrometry data
Published in
Journal of Cheminformatics, February 2017
DOI 10.1186/s13321-017-0197-z
Pubmed ID
Authors

Martin Loos, Heinz Singer

Abstract

A large proportion of polar anthropogenic compounds routinely released into the environment comprises homologue series, i.e., sets of chemicals differing in a repeating chemical unit. Using analytical techniques such as liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), these compounds are readily measurable as signal sets with characteristic differences in mass and typically retention time. However, and despite such distinct characteristics, no computational approach for the direct, simultaneous and untargeted detection of all such signal sets comprising both LC and HRMS information has to date been presented. A fast two-staged approach has been developed to extract LC-HRMS signal patterns which can be indicative of homologous analytes. In a first stage, a k-d tree representation of picked LC-HRMS peaks is used to extract all feasible 3-tuples of peaks with restrictions in, e.g., mass defect differences. A second stage then recombines these 3-tuples to larger series tuples while ensuring smooth changes in their retention time characteristics. This unsupervised approach was evaluated for ten effluent samples from Swiss sewage treatment plants (STPs), in both positive and negative electrospray-ionization. Beside recovering all continuous series of previously identified homologues, substantial fractions of nontargeted peaks could subsequently be assigned into very diverse peak series, although assignments were often not unique. The latter ambiguities were resolved by a self-organizing map technique and revealed both distinctive series meshing and rivaling combinatorial solutions in the presence of isobaric or gapped series peaks. When comparing STPs, several ubiquitous yet partially low-frequent series mass differences emerged and may prioritize future identification efforts. The presented algorithm is freely available as part of the R package nontarget and as a user-friendly web-interface at www.envihomolog.eawag.ch.Graphical AbstractSearch for systematic series indicative of homologous compounds is based on a partitioned representation of LC-HRMS signal characteristics. This nontargeted search first extracts series triplets in a nearest-neighbour walk and then recombines them to larger ones. For illustration, the two dimensions involving mass defect characteristics are represented by one only.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 63 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 63 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 19%
Researcher 10 16%
Student > Bachelor 7 11%
Other 5 8%
Student > Master 4 6%
Other 7 11%
Unknown 18 29%
Readers by discipline Count As %
Environmental Science 13 21%
Chemistry 11 17%
Agricultural and Biological Sciences 5 8%
Biochemistry, Genetics and Molecular Biology 4 6%
Engineering 4 6%
Other 3 5%
Unknown 23 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 November 2017.
All research outputs
#14,909,862
of 24,143,470 outputs
Outputs from Journal of Cheminformatics
#743
of 891 outputs
Outputs of similar age
#174,709
of 314,884 outputs
Outputs of similar age from Journal of Cheminformatics
#20
of 20 outputs
Altmetric has tracked 24,143,470 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 891 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.7. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,884 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.