↓ Skip to main content

Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data

Overview of attention for article published in Journal of Biomedical Semantics, March 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#12 of 362)
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

news
1 news outlet
twitter
15 X users
facebook
1 Facebook page

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data
Published in
Journal of Biomedical Semantics, March 2017
DOI 10.1186/s13326-017-0115-3
Pubmed ID
Authors

The Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative

Abstract

Integrating multiple sources of pharmacovigilance evidence has the potential to advance the science of safety signal detection and evaluation. In this regard, there is a need for more research on how to integrate multiple disparate evidence sources while making the evidence computable from a knowledge representation perspective (i.e., semantic enrichment). Existing frameworks suggest well-promising outcomes for such integration but employ a rather limited number of sources. In particular, none have been specifically designed to support both regulatory and clinical use cases, nor have any been designed to add new resources and use cases through an open architecture. This paper discusses the architecture and functionality of a system called Large-scale Adverse Effects Related to Treatment Evidence Standardization (LAERTES) that aims to address these shortcomings. LAERTES provides a standardized, open, and scalable architecture for linking evidence sources relevant to the association of drugs with health outcomes of interest (HOIs). Standard terminologies are used to represent different entities. For example, drugs and HOIs are represented in RxNorm and Systematized Nomenclature of Medicine -- Clinical Terms respectively. At the time of this writing, six evidence sources have been loaded into the LAERTES evidence base and are accessible through prototype evidence exploration user interface and a set of Web application programming interface services. This system operates within a larger software stack provided by the Observational Health Data Sciences and Informatics clinical research framework, including the relational Common Data Model for observational patient data created by the Observational Medical Outcomes Partnership. Elements of the Linked Data paradigm facilitate the systematic and scalable integration of relevant evidence sources. The prototype LAERTES system provides useful functionality while creating opportunities for further research. Future work will involve improving the method for normalizing drug and HOI concepts across the integrated sources, aggregated evidence at different levels of a hierarchy of HOI concepts, and developing more advanced user interface for drug-HOI investigations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 15 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 73 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 18%
Researcher 12 16%
Student > Ph. D. Student 9 12%
Professor > Associate Professor 5 7%
Student > Postgraduate 4 5%
Other 9 12%
Unknown 21 29%
Readers by discipline Count As %
Computer Science 15 21%
Pharmacology, Toxicology and Pharmaceutical Science 8 11%
Medicine and Dentistry 7 10%
Social Sciences 4 5%
Engineering 4 5%
Other 11 15%
Unknown 24 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 20. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 January 2022.
All research outputs
#1,624,843
of 23,577,761 outputs
Outputs from Journal of Biomedical Semantics
#12
of 362 outputs
Outputs of similar age
#33,339
of 309,320 outputs
Outputs of similar age from Journal of Biomedical Semantics
#1
of 13 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 362 research outputs from this source. They receive a mean Attention Score of 4.6. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 309,320 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.