↓ Skip to main content

Prokaryotic Cytoskeletons

Overview of attention for book
Attention for Chapter 6: Intermediate Filaments Supporting Cell Shape and Growth in Bacteria
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (65th percentile)

Mentioned by

6 tweeters


4 Dimensions

Readers on

17 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Intermediate Filaments Supporting Cell Shape and Growth in Bacteria
Chapter number 6
Book title
Prokaryotic Cytoskeletons
Published in
Sub cellular biochemistry, May 2017
DOI 10.1007/978-3-319-53047-5_6
Pubmed ID
Book ISBNs
978-3-31-953045-1, 978-3-31-953047-5

Kelemen, Gabriella H., Gabriella H. Kelemen


Jan Löwe, Linda A. Amos


For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.

Twitter Demographics

The data shown below were collected from the profiles of 6 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 17 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 17 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 24%
Student > Bachelor 3 18%
Student > Doctoral Student 2 12%
Lecturer 1 6%
Student > Master 1 6%
Other 2 12%
Unknown 4 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 35%
Agricultural and Biological Sciences 3 18%
Environmental Science 1 6%
Immunology and Microbiology 1 6%
Physics and Astronomy 1 6%
Other 1 6%
Unknown 4 24%

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2021.
All research outputs
of 18,244,737 outputs
Outputs from Sub cellular biochemistry
of 299 outputs
Outputs of similar age
of 275,214 outputs
Outputs of similar age from Sub cellular biochemistry
of 1 outputs
Altmetric has tracked 18,244,737 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 299 research outputs from this source. They receive a mean Attention Score of 4.2. This one has done well, scoring higher than 77% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,214 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 65% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them