↓ Skip to main content

After 10 years, how do changes in asset ownership affect the Indicador Econômico Nacional?

Overview of attention for article published in Revista de Saúde Pública, January 2017
Altmetric Badge

Mentioned by

1 tweeter
1 Facebook page


4 Dimensions

Readers on

9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
After 10 years, how do changes in asset ownership affect the Indicador Econômico Nacional?
Published in
Revista de Saúde Pública, January 2017
DOI 10.1590/s1518-8787.2017051006517
Pubmed ID

Ewerling, Fernanda, Barros, Aluísio J D, Fernanda Ewerling, Aluísio J D Barros


Our main objective was to analyse how the evolution of household assets ownership affected the Indicador Econômico Nacional (IEN - National Wealth index) and to point out the most stable assets and which lost importance more quickly. We analysed the trend of the ownership of each IEN variable and the distribution of the households' scores. We calculated the correlation coefficients of each variable separately with the IEN score and the household income. We also evaluated how the changes of the score distribution over time affected the validity of the published reference cut-points. We used data from consortium surveys conducted every two years from 2002 to 2014 in the city of Pelotas, Brazil. An increase in the educational level of household heads and in the ownership of all IEN assets, except radio and telephone, was observed in the study period. In general, the correlation of the assets with the IEN scores decreased over time. There was an increase in the score, with a consequent increase in the quintiles cut-points, but the distance between these cut-points had no significant variation. Thus, the reference cut-points for Pelotas, quickly became outdated. Some assets showed greatly reduction on its importance for the indicator, and the reference cut-points became obsolete very quickly. It is essential for a standardized wealth (or asset) index with research purposes to be updated frequently, especially the cut-points of reference distribution. Analisar como a evolução temporal da posse de bens domésticos afetou o Indicador Econômico Nacional e como essas mudanças afetaram o poder discriminatório do indicador. Analisou-se a evolução temporal da posse de cada uma das variáveis do Indicador Econômico Nacional, bem como da distribuição do escore dos domicílios. Utilizamos dados de inquéritos populacionais realizados bienalmente no município de Pelotas, RS, de 2002 a 2014. Foi calculado o coeficiente de correlação de cada variável isoladamente com o escore do Indicador Econômico Nacional e com a renda familiar. Avaliamos também como a variação da distribuição do escore ao longo do tempo afetou a validade da utilização dos pontos de corte de referência publicados. Houve aumento da escolaridade dos chefes das famílias e da posse de todos os bens, exceto rádio e linha telefônica no período. A correlação dos bens com o Indicador Econômico Nacional reduziu com o tempo. O escore aumentou, com consequente incremento nos pontos de corte dos quintis, mas a distância entre os pontos não teve variação importante. Assim, os pontos de corte de referência publicados para Pelotas rapidamente ficaram desatualizados. Alguns bens perderam a capacidade discriminatória e os pontos de corte ficaram obsoletos rapidamente. É essencial um indicador de bens padronizado para uso em pesquisa, que seja atualizado com frequência, em especial os pontos de corte da distribuição de referência.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 33%
Student > Master 2 22%
Professor > Associate Professor 1 11%
Researcher 1 11%
Unspecified 1 11%
Other 0 0%
Unknown 1 11%
Readers by discipline Count As %
Social Sciences 2 22%
Psychology 1 11%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%
Unspecified 1 11%
Medicine and Dentistry 1 11%
Other 1 11%
Unknown 2 22%