↓ Skip to main content

Synthetic Protein Switches

Overview of attention for book
Cover of 'Synthetic Protein Switches'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Synthetic Protein Switches: Theoretical and Experimental Considerations
  3. Altmetric Badge
    Chapter 2 Construction of Allosteric Protein Switches by Alternate Frame Folding and Intermolecular Fragment Exchange
  4. Altmetric Badge
    Chapter 3 Construction of Protein Switches by Domain Insertion and Directed Evolution
  5. Altmetric Badge
    Chapter 4 Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen
  6. Altmetric Badge
    Chapter 5 Ancestral Protein Reconstruction and Circular Permutation for Improving the Stability and Dynamic Range of FRET Sensors
  7. Altmetric Badge
    Chapter 6 Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment
  8. Altmetric Badge
    Chapter 7 Rational Design and Applications of Semisynthetic Modular Biosensors: SNIFITs and LUCIDs
  9. Altmetric Badge
    Chapter 8 Ultrasensitive Firefly Luminescent Intermediate-Based Protein-Protein Interaction Assay (FlimPIA) Based on the Functional Complementation of Mutant Firefly Luciferases
  10. Altmetric Badge
    Chapter 9 Quantitative and Dynamic Imaging of ATM Kinase Activity
  11. Altmetric Badge
    Chapter 10 Creation of Antigen-Dependent β-Lactamase Fusion Protein Tethered by Circularly Permuted Antibody Variable Domains
  12. Altmetric Badge
    Chapter 11 Protein and Protease Sensing by Allosteric Derepression
  13. Altmetric Badge
    Chapter 12 DNA-Specific Biosensors Based on Intramolecular β-Lactamase-Inhibitor Complex Formation
  14. Altmetric Badge
    Chapter 13 Engineering and Characterizing Synthetic Protease Sensors and Switches
  15. Altmetric Badge
    Chapter 14 Characterizing Dynamic Protein–Protein Interactions Using the Genetically Encoded Split Biosensor Assay Technique Split TEV
  16. Altmetric Badge
    Chapter 15 Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light
  17. Altmetric Badge
    Chapter 16 Light-Regulated Protein Kinases Based on the CRY2-CIB1 System
  18. Altmetric Badge
    Chapter 17 Yeast-Based Screening System for the Selection of Functional Light-Driven K+ Channels
  19. Altmetric Badge
    Chapter 18 Primer-Aided Truncation for the Creation of Hybrid Proteins
  20. Altmetric Badge
    Chapter 19 Engineering Small Molecule Responsive Split Protein Kinases
  21. Altmetric Badge
    Chapter 20 Directed Evolution Methods to Rewire Signaling Networks
Attention for Chapter 2: Construction of Allosteric Protein Switches by Alternate Frame Folding and Intermolecular Fragment Exchange
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Construction of Allosteric Protein Switches by Alternate Frame Folding and Intermolecular Fragment Exchange
Chapter number 2
Book title
Synthetic Protein Switches
Published in
Methods in molecular biology, March 2017
DOI 10.1007/978-1-4939-6940-1_2
Pubmed ID
Book ISBNs
978-1-4939-6938-8, 978-1-4939-6940-1
Authors

Jeung-Hoi Ha, Stewart N. Loh

Editors

Viktor Stein

Abstract

Alternate frame folding (AFF) and protein/fragment exchange (FREX) are related technologies for engineering allosteric conformational changes into proteins that have no pre-existing allosteric properties. One of their chief purposes is to turn an ordinary protein into a biomolecular switch capable of transforming an input event into an optical or functional readout. Here, we present a guide for converting an arbitrary binding protein into a fluorescent biosensor with Förster resonance energy transfer output. Because the AFF and FREX mechanisms are founded on general principles of protein structure and stability rather than a property that is idiosyncratic to the target protein, the basic design steps-choice of permutation/cleavage sites, molecular biology, and construct optimization-remain the same for any target protein. We highlight effective strategies as well as common pitfalls based on our experience with multiple AFF and FREX constructs.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 40%
Student > Postgraduate 2 20%
Professor 1 10%
Unspecified 1 10%
Student > Ph. D. Student 1 10%
Other 1 10%
Readers by discipline Count As %
Agricultural and Biological Sciences 3 30%
Biochemistry, Genetics and Molecular Biology 3 30%
Unspecified 1 10%
Environmental Science 1 10%
Unknown 2 20%