↓ Skip to main content

Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture…

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, March 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (68th percentile)
  • Good Attention Score compared to outputs of the same age and source (72nd percentile)

Mentioned by

twitter
8 X users
video
1 YouTube creator

Citations

dimensions_citation
74 Dimensions

Readers on

mendeley
133 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform
Published in
Biotechnology for Biofuels and Bioproducts, March 2017
DOI 10.1186/s13068-017-0736-x
Pubmed ID
Authors

Tingting Li, Chien-Ting Li, Kirk Butler, Stephanie G. Hays, Michael T. Guarnieri, George A. Oyler, Michael J. Betenbaugh

Abstract

The feasibility of heterotrophic-phototrophic symbioses was tested via pairing of yeast strains Cryptococcus curvatus, Rhodotorula glutinis, or Saccharomyces cerevisiae with a sucrose-secreting cyanobacterium Synechococcus elongatus. The phototroph S. elongatus showed no growth in standard BG-11 medium with yeast extract, but grew well in BG-11 medium alone or supplemented with yeast nitrogen base without amino acids (YNB w/o aa). Among three yeast species, C. curvatus and R. glutinis adapted well to the BG-11 medium supplemented with YNB w/o aa, sucrose, and various concentrations of NaCl needed to maintain sucrose secretion from S. elongatus, while growth of S. cerevisiae was highly dependent on sucrose levels. R. glutinis and C. curvatus grew efficiently and utilized sucrose produced by the partner in co-culture. Co-cultures of S. elongatus and R. glutinis were sustained over 1 month in both batch and in semi-continuous culture, with the final biomass and overall lipid yields in the batch co-culture 40 to 60% higher compared to batch mono-cultures of S. elongatus. The co-cultures showed enhanced levels of palmitoleic and linoleic acids. Furthermore, cyanobacterial growth in co-culture with R. glutinis was significantly superior to axenic growth, as S. elongatus was unable to grow in the absence of the yeast partner when cultivated at lower densities in liquid medium. Accumulated reactive oxygen species was observed to severely inhibit axenic growth of cyanobacteria, which was efficiently alleviated through catalase supply and even more effectively with co-cultures of R. glutinis. The pairing of a cyanobacterium and eukaryotic heterotroph in the artificial lichen of this study demonstrates the importance of mutual interactions between phototrophs and heterotrophs, e.g., phototrophs provide a carbon source to heterotrophs, and heterotrophs assist phototrophic growth and survival by removing/eliminating oxidative stress. Our results establish a potential stable production platform that combines the metabolic capability of photoautotrophs to capture inorganic carbon with the channeling of the resulting organic carbon directly to a robust heterotroph partner for producing biofuel and other chemical precursors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 133 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Colombia 1 <1%
Iceland 1 <1%
Unknown 130 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 20%
Student > Master 24 18%
Researcher 15 11%
Student > Bachelor 12 9%
Student > Doctoral Student 7 5%
Other 16 12%
Unknown 32 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 32 24%
Agricultural and Biological Sciences 32 24%
Engineering 7 5%
Chemical Engineering 5 4%
Environmental Science 4 3%
Other 15 11%
Unknown 38 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 July 2021.
All research outputs
#6,755,994
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#421
of 1,578 outputs
Outputs of similar age
#101,360
of 322,965 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#15
of 54 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 322,965 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 72% of its contemporaries.