↓ Skip to main content

Interventions to improve adherence to inhaled steroids for asthma

Overview of attention for article published in Cochrane database of systematic reviews, April 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

blogs
1 blog
twitter
37 tweeters
facebook
7 Facebook pages

Citations

dimensions_citation
57 Dimensions

Readers on

mendeley
262 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions to improve adherence to inhaled steroids for asthma
Published in
Cochrane database of systematic reviews, April 2017
DOI 10.1002/14651858.cd012226.pub2
Pubmed ID
Authors

Rebecca Normansell, Kayleigh M Kew, Elizabeth Stovold

Abstract

Despite its proven efficacy in improving symptoms and reducing exacerbations, many patients with asthma are not fully adherent to their steroid inhaler. Suboptimal adherence leads to poorer clinical outcomes and increased health service utilisation, and has been identified as a contributing factor to a third of asthma deaths in the UK. Reasons for non-adherence vary, and a variety of interventions have been proposed to help people improve treatment adherence. To assess the efficacy and safety of interventions intended to improve adherence to inhaled corticosteroids among people with asthma. We identified trials from the Cochrane Airways Trials Register, which contains studies identified through multiple electronic searches and handsearches of other sources. We also searched trial registries and reference lists of primary studies. We conducted the most recent searches on 18 November 2016. We included parallel and cluster randomised controlled trials of any duration conducted in any setting. We included studies reported as full-text articles, those published as abstracts only and unpublished data. We included trials of adults and children with asthma and a current prescription for an inhaled corticosteroid (ICS) (as monotherapy or in combination with a long-acting beta2-agonist (LABA)). Eligible trials compared an intervention primarily aimed at improving adherence to ICS versus usual care or an alternative intervention. Two review authors screened the searches, extracted study characteristics and outcome data from included studies and assessed risk of bias. Primary outcomes were adherence to ICS, exacerbations requiring at least oral corticosteroids and asthma control. We graded results and presented evidence in 'Summary of findings' tables for each comparison.We analysed dichotomous data as odds ratios, and continuous data as mean differences or standardised mean differences, all using a random-effects model. We described skewed data narratively. We made no a priori assumptions about how trials would be categorised but conducted meta-analyses only if treatments, participants and the underlying clinical question were similar enough for pooling to make sense. We included 39 parallel randomised controlled trials (RCTs) involving adults and children with asthma, 28 of which (n = 16,303) contributed data to at least one meta-analysis. Follow-up ranged from two months to two years (median six months), and trials were conducted mainly in high-income countries. Most studies reported some measure of adherence to ICS and a variety of other outcomes such as quality of life and asthma control. Studies generally were at low or unclear risk of selection bias and at high risk of biases associated with blinding. We considered around half the studies to be at high risk for attrition bias and selective outcome reporting.We classified studies into four comparisons: adherence education versus control (20 studies); electronic trackers or reminders versus control (11 studies); simplified drug regimens versus usual drug regimens (four studies); and school-based directly observed therapy (three studies). Two studies are described separately.All pooled results for adherence education, electronic trackers or reminders and simplified regimens showed better adherence than controls. Analyses limited to studies using objective measures revealed that adherence education showed a benefit of 20 percentage points over control (95% confidence interval (CI) 7.52 to 32.74; five studies; low-quality evidence); electronic trackers or reminders led to better adherence of 19 percentage points (95% CI 14.47 to 25.26; six studies; moderate-quality evidence); and simplified regimens led to better adherence of 4 percentage points (95% CI 1.88 to 6.16; three studies; moderate-quality evidence). Our confidence in the evidence was reduced by risk of bias and inconsistency.Improvements in adherence were not consistently translated into observable benefit for clinical outcomes in our pooled analyses. None of the intervention types showed clear benefit for our primary clinical outcomes - exacerbations requiring an oral corticosteroid (OCS) (evidence of very low to low quality) and asthma control (evidence of low to moderate quality); nor for our secondary outcomes - unscheduled visits (evidence of very low to moderate quality) and quality of life (evidence of low to moderate quality). However, some individual studies reported observed benefits for OCS and use of healthcare services. Most school or work absence data were skewed and were difficult to interpret (evidence of low quality, when graded), and most studies did not specifically measure or report adverse events.Studies investigating the possible benefit of administering ICS at school did not measure adherence, exacerbations requiring OCS, asthma control or adverse events. One study showed fewer unscheduled visits, and another found no differences; data could not be combined. Pooled results suggest that a variety of interventions can improve adherence. The clinical relevance of this improvement, highlighted by uncertain and inconsistent impact on clinical outcomes such as quality of life and asthma control, is less clear. We have low to moderate confidence in these findings owing to concerns about risk of bias and inconsistency. Future studies would benefit from predefining an evidence-based 'cut-off' for acceptable adherence and using objective adherence measures and validated tools and questionnaires. When possible, covert monitoring and some form of blinding or active control may help disentangle effects of the intervention from effects of inclusion in an adherence trial.

Twitter Demographics

The data shown below were collected from the profiles of 37 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 262 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 262 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 16%
Student > Bachelor 31 12%
Researcher 25 10%
Student > Doctoral Student 20 8%
Other 18 7%
Other 63 24%
Unknown 63 24%
Readers by discipline Count As %
Medicine and Dentistry 91 35%
Nursing and Health Professions 37 14%
Psychology 18 7%
Social Sciences 11 4%
Pharmacology, Toxicology and Pharmaceutical Science 10 4%
Other 26 10%
Unknown 69 26%

Attention Score in Context

This research output has an Altmetric Attention Score of 27. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 December 2017.
All research outputs
#657,163
of 14,157,456 outputs
Outputs from Cochrane database of systematic reviews
#2,005
of 10,870 outputs
Outputs of similar age
#22,020
of 266,465 outputs
Outputs of similar age from Cochrane database of systematic reviews
#61
of 242 outputs
Altmetric has tracked 14,157,456 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,870 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.7. This one has done well, scoring higher than 81% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 266,465 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 242 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.