↓ Skip to main content

Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout

Overview of attention for article published in Virus Research, January 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (74th percentile)

Mentioned by

twitter
2 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout
Published in
Virus Research, January 2017
DOI 10.1016/j.virusres.2016.10.011
Pubmed ID
Authors

Andrew R. Wargo, Robert J. Scott, Benjamin Kerr, Gael Kurath

Abstract

Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2days, defining a generally uniform early peak period of shedding from 1 to 4days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority of fish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV shedding kinetics and variation at the individual fish level could assist with management decisions about how to respond to disease outbreaks when they occur.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 33%
Student > Master 2 17%
Unspecified 2 17%
Student > Ph. D. Student 2 17%
Student > Postgraduate 1 8%
Other 1 8%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 42%
Unspecified 4 33%
Veterinary Science and Veterinary Medicine 1 8%
Arts and Humanities 1 8%
Immunology and Microbiology 1 8%
Other 0 0%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2017.
All research outputs
#7,024,481
of 12,293,384 outputs
Outputs from Virus Research
#1,188
of 1,999 outputs
Outputs of similar age
#124,592
of 264,034 outputs
Outputs of similar age from Virus Research
#11
of 47 outputs
Altmetric has tracked 12,293,384 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,999 research outputs from this source. They receive a mean Attention Score of 3.1. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,034 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.