↓ Skip to main content

Lipid signaling protocols

Overview of attention for book
Cover of 'Lipid signaling protocols'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Method for Assaying the Lipid Kinase Phosphatidylinositol-5-phosphate 4-kinase α in Quantitative High-Throughput Screening (qHTS) Bioluminescent Format
  3. Altmetric Badge
    Chapter 2 Assaying Ceramide Synthase Activity In Vitro and in Living Cells Using Liquid Chromatography-Mass Spectrometry
  4. Altmetric Badge
    Chapter 3 Lipid Signaling Protocols
  5. Altmetric Badge
    Chapter 4 Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha
  6. Altmetric Badge
    Chapter 5 Measurement of Long-Chain Fatty Acyl-CoA Synthetase Activity
  7. Altmetric Badge
    Chapter 6 Qualitative and Quantitative In Vitro Analysis of Phosphatidylinositol Phosphatase Substrate Specificity
  8. Altmetric Badge
    Chapter 7 Luciferase Reporter Assays to Assess Liver X Receptor Transcriptional Activity
  9. Altmetric Badge
    Chapter 8 Metabolically Biotinylated Reporters for Electron Microscopic Imaging of Cytoplasmic Membrane Microdomains
  10. Altmetric Badge
    Chapter 9 Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.
  11. Altmetric Badge
    Chapter 10 Isolation and Analysis of Detergent-Resistant Membrane Fractions
  12. Altmetric Badge
    Chapter 11 Detection of Isolated Mitochondria-Associated ER Membranes Using the Sigma-1 Receptor
  13. Altmetric Badge
    Chapter 12 Using Surface Plasmon Resonance to Quantitatively Assess Lipid–Protein Interactions
  14. Altmetric Badge
    Chapter 13 Analyzing Protein–Phosphoinositide Interactions with Liposome Flotation Assays
  15. Altmetric Badge
    Chapter 14 High-Throughput Fluorometric Assay for Membrane–Protein Interaction
  16. Altmetric Badge
    Chapter 15 Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging.
  17. Altmetric Badge
    Chapter 16 Analysis of Sphingolipid Synthesis and Transport by Metabolic Labeling of Cultured Cells with [ 3 H]Serine
  18. Altmetric Badge
    Chapter 17 Determination and Characterization of Tetraspanin-Associated Phosphoinositide-4 Kinases in Primary and Neoplastic Liver Cells
  19. Altmetric Badge
    Chapter 18 Analysis of the Phosphoinositide Composition of Subcellular Membrane Fractions
  20. Altmetric Badge
    Chapter 19 Single-Molecule Imaging of Signal Transduction via GPI-Anchored Receptors
  21. Altmetric Badge
    Chapter 20 Measuring Phosphatidylinositol Generation on Biological Membranes
  22. Altmetric Badge
    Chapter 21 Assay for CDP-Diacylglycerol Generation by CDS in Membrane Fractions
Attention for Chapter 9: Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Fluorescence Recovery After Photobleaching Analysis of the Diffusional Mobility of Plasma Membrane Proteins: HER3 Mobility in Breast Cancer Cell Membranes.
Chapter number 9
Book title
Lipid Signaling Protocols
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3170-5_9
Pubmed ID
Book ISBNs
978-1-4939-3169-9, 978-1-4939-3170-5
Authors

Sarkar, Mitul, Koland, John G, Mitul Sarkar, John G. Koland

Abstract

The fluorescence recovery after photobleaching (FRAP) method is a straightforward means of assessing the diffusional mobility of membrane-associated proteins that is readily performed with current confocal microscopy instrumentation. We describe here the specific application of the FRAP method in characterizing the lateral diffusion of genetically encoded green fluorescence protein (GFP)-tagged plasma membrane receptor proteins. The method is exemplified in an examination of whether the previously observed segregation of the mammalian HER3 receptor protein in discrete plasma membrane microdomains results from its physical interaction with cellular entities that restrict its mobility. Our FRAP measurements of the diffusional mobility of GFP-tagged HER3 reporters expressed in MCF7 cultured breast cancer cells showed that despite the observed segregation of HER3 receptors within plasma membrane microdomains their diffusion on the macroscopic scale is not spatially restricted. Thus, in FRAP analyses of various HER3 reporters a near-complete recovery of fluorescence after photobleaching was observed, indicating that HER3 receptors are not immobilized by long-lived physical interactions with intracellular species. An examination of HER3 proteins with varying intracellular domain sequence truncations also indicated that a proposed formation of oligomeric HER3 networks, mediated by physical interactions involving specific HER3 intracellular domain sequences, either does not occur or does not significantly reduce HER3 mobility on the macroscopic scale.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 50%
Student > Bachelor 2 33%
Other 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 67%
Chemical Engineering 1 17%
Unknown 1 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 November 2015.
All research outputs
#20,295,501
of 22,832,057 outputs
Outputs from Methods in molecular biology
#9,915
of 13,126 outputs
Outputs of similar age
#330,615
of 393,555 outputs
Outputs of similar age from Methods in molecular biology
#1,053
of 1,470 outputs
Altmetric has tracked 22,832,057 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,126 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,555 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.