↓ Skip to main content

Plant Genomics

Overview of attention for book
Cover of 'Plant Genomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 CRISPR/Cas-Mediated In Planta Gene Targeting
  3. Altmetric Badge
    Chapter 2 User Guide for the LORE1 Insertion Mutant Resource
  4. Altmetric Badge
    Chapter 3 Enabling Reverse Genetics in Medicago truncatula Using High-Throughput Sequencing for Tnt1 Flanking Sequence Recovery
  5. Altmetric Badge
    Chapter 4 The Generation of Doubled Haploid Lines for QTL Mapping
  6. Altmetric Badge
    Chapter 5 Assessing Distribution and Variation of Genome-Wide DNA Methylation Using Short-Read Sequencing
  7. Altmetric Badge
    Chapter 6 Circular Chromosome Conformation Capture in Plants
  8. Altmetric Badge
    Chapter 7 Genome-Wide Profiling of Histone Modifications and Histone Variants in Arabidopsis thaliana and Marchantia polymorpha
  9. Altmetric Badge
    Chapter 8 Tissue-Specific Transcriptome Profiling in Arabidopsis Roots
  10. Altmetric Badge
    Chapter 9 Sample Preparation Protocols for Protein Abundance, Acetylome, and Phosphoproteome Profiling of Plant Tissues
  11. Altmetric Badge
    Chapter 10 Automated High-Throughput Root Phenotyping of Arabidopsis thaliana Under Nutrient Deficiency Conditions
  12. Altmetric Badge
    Chapter 11 Large-Scale Phenotyping of Root Traits in the Model Legume Lotus japonicus
  13. Altmetric Badge
    Chapter 12 Long-Term Confocal Imaging of Arabidopsis thaliana Roots for Simultaneous Quantification of Root Growth and Fluorescent Signals
  14. Altmetric Badge
    Chapter 13 Identification of Protein–DNA Interactions Using Enhanced Yeast One-Hybrid Assays and a Semiautomated Approach
  15. Altmetric Badge
    Chapter 14 Mapping Protein-Protein Interaction Using High-Throughput Yeast 2-Hybrid
  16. Altmetric Badge
    Chapter 15 Mapping Protein–Protein Interactions Using Affinity Purification and Mass Spectrometry
  17. Altmetric Badge
    Chapter 16 Measuring Protein Movement, Oligomerization State, and Protein-Protein Interaction in Arabidopsis Roots Using Scanning Fluorescence Correlation Spe..
  18. Altmetric Badge
    Chapter 17 Studying Protein–Protein Interactions In Planta Using Advanced Fluorescence Microscopy
  19. Altmetric Badge
    Chapter 18 Chemiluminescence-Based Detection of Peptide Activity and Peptide-Receptor Binding in Plants
  20. Altmetric Badge
    Chapter 19 Application of Chemical Genomics to Plant–Bacteria Communication: A High-Throughput System to Identify Novel Molecules Modulating the Induction of Bacterial Virulence Genes by Plant Signals
Attention for Chapter 4: The Generation of Doubled Haploid Lines for QTL Mapping
Altmetric Badge

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Generation of Doubled Haploid Lines for QTL Mapping
Chapter number 4
Book title
Plant Genomics
Published in
Methods in molecular biology, April 2017
DOI 10.1007/978-1-4939-7003-2_4
Pubmed ID
Book ISBNs
978-1-4939-7001-8, 978-1-4939-7003-2
Authors

Daniele L. Filiault, Danelle K. Seymour, Ravi Maruthachalam, Julin N. Maloof

Editors

Wolfgang Busch

Abstract

Recombinant inbred lines (RILs) are an essential tool for quantitative trait locus (QTL) mapping in Arabidopsis thaliana. Conventionally, the development of these lines is a time-consuming and tedious process requiring six to eight generations of selfing. Here, we describe an alternative approach: the rapid generation of RILs in A. thaliana via the creation of doubled haploids. In this method, F1 plants are crossed to an engineered haploid inducer to produce haploid plants. The chromosomes of these haploids then spontaneously double, generating immortalized homozygous F2 lines called doubled haploid RILs (DH RILs). Finally, DH RILs are genotyped using low-coverage whole-genome sequencing and are ready to be used for QTL mapping.

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 22%
Researcher 2 22%
Student > Ph. D. Student 1 11%
Student > Master 1 11%
Librarian 1 11%
Other 1 11%
Unknown 1 11%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 44%
Agricultural and Biological Sciences 4 44%
Unknown 1 11%