↓ Skip to main content

The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants

Overview of attention for article published in Genome Biology, May 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
2 blogs
twitter
12 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
130 Dimensions

Readers on

mendeley
197 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The evolution of CHROMOMETHYLASES and gene body DNA methylation in plants
Published in
Genome Biology, May 2017
DOI 10.1186/s13059-017-1195-1
Pubmed ID
Authors

Adam J. Bewick, Chad E. Niederhuth, Lexiang Ji, Nicholas A. Rohr, Patrick T. Griffin, Jim Leebens-Mack, Robert J. Schmitz

Abstract

The evolution of gene body methylation (gbM), its origins, and its functional consequences are poorly understood. By pairing the largest collection of transcriptomes (>1000) and methylomes (77) across Viridiplantae, we provide novel insights into the evolution of gbM and its relationship to CHROMOMETHYLASE (CMT) proteins. CMTs are evolutionary conserved DNA methyltransferases in Viridiplantae. Duplication events gave rise to what are now referred to as CMT1, 2 and 3. Independent losses of CMT1, 2, and 3 in eudicots, CMT2 and ZMET in monocots and monocots/commelinids, variation in copy number, and non-neutral evolution suggests overlapping or fluid functional evolution of this gene family. DNA methylation within genes is widespread and is found in all major taxonomic groups of Viridiplantae investigated. Genes enriched with methylated CGs (mCG) were also identified in species sister to angiosperms. The proportion of genes and DNA methylation patterns associated with gbM are restricted to angiosperms with a functional CMT3 or ortholog. However, mCG-enriched genes in the gymnosperm Pinus taeda shared some similarities with gbM genes in Amborella trichopoda. Additionally, gymnosperms and ferns share a CMT homolog closely related to CMT2 and 3. Hence, the dependency of gbM on a CMT most likely extends to all angiosperms and possibly gymnosperms and ferns. The resulting gene family phylogeny of CMT transcripts from the most diverse sampling of plants to date redefines our understanding of CMT evolution and its evolutionary consequences on DNA methylation. Future, functional tests of homologous and paralogous CMTs will uncover novel roles and consequences to the epigenome.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 197 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
Chile 1 <1%
United States 1 <1%
Unknown 194 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 57 29%
Researcher 43 22%
Student > Bachelor 21 11%
Student > Master 16 8%
Student > Doctoral Student 7 4%
Other 16 8%
Unknown 37 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 102 52%
Biochemistry, Genetics and Molecular Biology 48 24%
Environmental Science 2 1%
Medicine and Dentistry 2 1%
Immunology and Microbiology 1 <1%
Other 3 2%
Unknown 39 20%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2020.
All research outputs
#1,696,166
of 25,382,440 outputs
Outputs from Genome Biology
#1,385
of 4,468 outputs
Outputs of similar age
#31,984
of 324,557 outputs
Outputs of similar age from Genome Biology
#31
of 62 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,468 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 27.6. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 324,557 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 62 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.