↓ Skip to main content

Cell Viability Assays

Overview of attention for book
Cover of 'Cell Viability Assays'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin
  3. Altmetric Badge
    Chapter 2 Assaying Cellular Viability Using the Neutral Red Uptake Assay
  4. Altmetric Badge
    Chapter 3 Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry
  5. Altmetric Badge
    Chapter 4 High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity
  6. Altmetric Badge
    Chapter 5 A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells
  7. Altmetric Badge
    Chapter 6 Ferroptosis and Cell Death Analysis by Flow Cytometry
  8. Altmetric Badge
    Chapter 7 Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness
  9. Altmetric Badge
    Chapter 8 An ATP-Based Luciferase Viability Assay for Animal African Trypanosomes Using a 96-Well Plate
  10. Altmetric Badge
    Chapter 9 SYBR® Green I-Based Fluorescence Assay to Assess Cell Viability of Malaria Parasites for Routine Use in Compound Screening
  11. Altmetric Badge
    Chapter 10 Screening Applications to Test Cellular Fitness in Transwell® Models After Nanoparticle Treatment
  12. Altmetric Badge
    Chapter 11 Assays for Analyzing the Role of Transport Proteins in the Uptake and the Vectorial Transport of Substances Affecting Cell Viability
  13. Altmetric Badge
    Chapter 12 Metabolite Profiling of Mammalian Cell Culture Processes to Evaluate Cellular Viability
  14. Altmetric Badge
    Chapter 13 Assaying Spontaneous Network Activity and Cellular Viability Using Multi-well Microelectrode Arrays
  15. Altmetric Badge
    Chapter 14 Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability
  16. Altmetric Badge
    Chapter 15 Functional Viability: Measurement of Synaptic Vesicle Pool Sizes
  17. Altmetric Badge
    Chapter 16 Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells
  18. Altmetric Badge
    Chapter 17 Systematic Cell-Based Phenotyping of Missense Alleles
  19. Altmetric Badge
    Chapter 18 Second Harmonic Generation Microscopy of Muscle Cell Morphology and Dynamics
  20. Altmetric Badge
    Chapter 19 Assessment of Population and ECM Production Using Multiphoton Microscopy as an Indicator of Cell Viability
  21. Altmetric Badge
    Chapter 20 Average Rheological Quantities of Cells in Monolayers
  22. Altmetric Badge
    Chapter 21 Measurement of Cellular Behavior by Electrochemical Impedance Sensing
  23. Altmetric Badge
    Chapter 22 Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells
  24. Altmetric Badge
    Chapter 23 Erratum to: Functional Viability: Measurement of Synaptic Vesicle Pool Sizes
  25. Altmetric Badge
    Chapter 24 Erratum to: Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells
Attention for Chapter 5: A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells
Altmetric Badge

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells
Chapter number 5
Book title
Cell Viability Assays
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6960-9_5
Pubmed ID
Book ISBNs
978-1-4939-6959-3, 978-1-4939-6960-9
Authors

Ann-Katrin Menzner, Daniel F. Gilbert

Editors

Daniel F. Gilbert, Oliver Friedrich

Abstract

The incidence of neurological diseases including learning and developmental disorders has increased in recent years. Concurrently, the number and volume of worldwide registered and traded chemicals have also increased. There is a broad consensus that the developing brain is particularly sensitive to damage by chemicals and that evaluation of chemicals for developmental toxicity or neurotoxicity is critical to human health. Human pluripotent embryonal carcinoma (NTERA-2 or NT2) cells are increasingly considered as a suitable model for in vitro developmental toxicity and neurotoxicity (DT/DNT) studies as they undergo neuronal differentiation upon stimulation with retinoic acid (RA) and allow toxicity assessment at different stages of maturation. Here we describe a protocol for cell fitness screening in differentiating NT2 cells based on the analysis of intracellular ATP levels allowing for the identification of chemicals which are potentially harmful to the developing brain. The described method is suitable to be adapted to low-, medium-, and high-throughput screening and allows multiplexing with other cell fitness indicators. While the presented protocol focuses on cell fitness screening in human pluripotent stem cells it may also be applied to other in vitro models.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 30%
Researcher 2 20%
Student > Doctoral Student 1 10%
Unknown 4 40%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 20%
Chemical Engineering 1 10%
Pharmacology, Toxicology and Pharmaceutical Science 1 10%
Medicine and Dentistry 1 10%
Neuroscience 1 10%
Other 0 0%
Unknown 4 40%