↓ Skip to main content

Cell Viability Assays

Overview of attention for book
Cover of 'Cell Viability Assays'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Basic Colorimetric Proliferation Assays: MTT, WST, and Resazurin
  3. Altmetric Badge
    Chapter 2 Assaying Cellular Viability Using the Neutral Red Uptake Assay
  4. Altmetric Badge
    Chapter 3 Assessment of Cell Viability with Single-, Dual-, and Multi-Staining Methods Using Image Cytometry
  5. Altmetric Badge
    Chapter 4 High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity
  6. Altmetric Badge
    Chapter 5 A Protocol for In Vitro High-Throughput Chemical Susceptibility Screening in Differentiating NT2 Stem Cells
  7. Altmetric Badge
    Chapter 6 Ferroptosis and Cell Death Analysis by Flow Cytometry
  8. Altmetric Badge
    Chapter 7 Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness
  9. Altmetric Badge
    Chapter 8 An ATP-Based Luciferase Viability Assay for Animal African Trypanosomes Using a 96-Well Plate
  10. Altmetric Badge
    Chapter 9 SYBR® Green I-Based Fluorescence Assay to Assess Cell Viability of Malaria Parasites for Routine Use in Compound Screening
  11. Altmetric Badge
    Chapter 10 Screening Applications to Test Cellular Fitness in Transwell® Models After Nanoparticle Treatment
  12. Altmetric Badge
    Chapter 11 Assays for Analyzing the Role of Transport Proteins in the Uptake and the Vectorial Transport of Substances Affecting Cell Viability
  13. Altmetric Badge
    Chapter 12 Metabolite Profiling of Mammalian Cell Culture Processes to Evaluate Cellular Viability
  14. Altmetric Badge
    Chapter 13 Assaying Spontaneous Network Activity and Cellular Viability Using Multi-well Microelectrode Arrays
  15. Altmetric Badge
    Chapter 14 Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability
  16. Altmetric Badge
    Chapter 15 Functional Viability: Measurement of Synaptic Vesicle Pool Sizes
  17. Altmetric Badge
    Chapter 16 Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells
  18. Altmetric Badge
    Chapter 17 Systematic Cell-Based Phenotyping of Missense Alleles
  19. Altmetric Badge
    Chapter 18 Second Harmonic Generation Microscopy of Muscle Cell Morphology and Dynamics
  20. Altmetric Badge
    Chapter 19 Assessment of Population and ECM Production Using Multiphoton Microscopy as an Indicator of Cell Viability
  21. Altmetric Badge
    Chapter 20 Average Rheological Quantities of Cells in Monolayers
  22. Altmetric Badge
    Chapter 21 Measurement of Cellular Behavior by Electrochemical Impedance Sensing
  23. Altmetric Badge
    Chapter 22 Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells
  24. Altmetric Badge
    Chapter 23 Erratum to: Functional Viability: Measurement of Synaptic Vesicle Pool Sizes
  25. Altmetric Badge
    Chapter 24 Erratum to: Phenotyping Cellular Viability by Functional Analysis of Ion Channels: GlyR-Targeted Screening in NT2-N Cells
Attention for Chapter 14: Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability
Altmetric Badge

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Quantitative Ratiometric Ca2+ Imaging to Assess Cell Viability
Chapter number 14
Book title
Cell Viability Assays
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6960-9_14
Pubmed ID
Book ISBNs
978-1-4939-6959-3, 978-1-4939-6960-9
Authors

Oliver Friedrich, Stewart I. Head, Friedrich, Oliver, Head, Stewart I.

Editors

Daniel F. Gilbert, Oliver Friedrich

Abstract

Viability of cells is strongly related to their Ca(2+) homeostasis. Ca(2+) signal fluctuations can be on a slow time scale, e.g., in non-excitable cells, but also in the range of tens of milliseconds for excitable cells, such as nerve and muscle. Muscle fibers respond to electrical stimulation with Ca(2+) transients that exceed their resting basal level about 100 times. Fluorescent Ca(2+) dyes have become an indispensable means to monitor Ca(2+) fluctuations in living cells online. Fluorescence intensity of such "environmental dyes" relies on a buffer-ligand interaction which is not only governed by laws of mass action but also by binding and unbinding kinetics that have to be considered for proper Ca(2+) kinetics and amplitude validation. The concept of Ca(2+) dyes including the different approaches using ratiometric and non-ratiometric dyes, the way to correctly choose dyes according to their low-/high-affinity properties and kinetics as well as staining techniques, and in situ calibration are reviewed and explained. We provide detailed protocols to apply ratiometric Fura-2 imaging of resting Ca(2+) and Ca(2+) fluctuations during field-stimulation in single isolated skeletal muscle cells and how to translate fluorescence intensities into absolute Ca(2+) concentrations using appropriate calibration techniques.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 2 29%
Professor 1 14%
Researcher 1 14%
Other 1 14%
Unknown 2 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 29%
Agricultural and Biological Sciences 1 14%
Neuroscience 1 14%
Medicine and Dentistry 1 14%
Unknown 2 29%