↓ Skip to main content

ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic

Overview of attention for article published in BMC Molecular and Cell Biology, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
ULK1 phosphorylates Sec23A and mediates autophagy-induced inhibition of ER-to-Golgi traffic
Published in
BMC Molecular and Cell Biology, May 2017
DOI 10.1186/s12860-017-0138-8
Pubmed ID
Authors

Wenjia Gan, Caiyun Zhang, Ka Yu Siu, Ayano Satoh, Julian A. Tanner, Sidney Yu

Abstract

Autophagy is an inducible autodigestive process that allows cells to recycle proteins and other materials for survival during stress and nutrient deprived conditions. The kinase ULK1 is required to activate this process. ULK1 phosphorylates a number of target proteins and regulates many cellular processes including the early secretory pathway. Recently, ULK1 has been demonstrated to phosphorylate Sec16 and affects the transport of serotonin transporter at the ER exit sites (ERES), but whether ULK1 may affect the transport of other cargo proteins and general secretion has not been fully addressed. In this study, we identified Sec23A, a component of the COPII vesicle coat, as a target of ULK1 phosphorylation. Elevated autophagy, induced by amino acid starvation, rapamycin, or overexpression of ULK1 caused aggregation of the ERES, a region of the ER dedicated for the budding of COPII vesicles. Transport of cargo proteins was also inhibited under these conditions and was retained at the ERES. ULK1 phosphorylation of Sec23A reduced the interaction between Sec23A and Sec31A. We identified serine 207, serine 312 and threonine 405 on Sec23A as ULK1 phosphorylation sites. Among these residues, serine 207, when changed to phospho-deficient and phospho-mimicking mutants, most faithfully recapitulated the above-mentioned effects of ULK1 phospho-regulation. These findings identify Sec23A as a new target of ULK1 and uncover a mechanism of coordinating intracellular protein transport and autophagy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 17%
Researcher 7 13%
Student > Doctoral Student 5 10%
Professor 5 10%
Student > Bachelor 3 6%
Other 9 17%
Unknown 14 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 38%
Agricultural and Biological Sciences 11 21%
Medicine and Dentistry 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Immunology and Microbiology 1 2%
Other 1 2%
Unknown 15 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2017.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from BMC Molecular and Cell Biology
#896
of 1,233 outputs
Outputs of similar age
#235,519
of 325,190 outputs
Outputs of similar age from BMC Molecular and Cell Biology
#8
of 15 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,233 research outputs from this source. They receive a mean Attention Score of 4.0. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 325,190 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.