↓ Skip to main content

Complexity and algorithms for copy-number evolution problems

Overview of attention for article published in Algorithms for Molecular Biology, May 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Complexity and algorithms for copy-number evolution problems
Published in
Algorithms for Molecular Biology, May 2017
DOI 10.1186/s13015-017-0103-2
Pubmed ID
Authors

Mohammed El-Kebir, Benjamin J. Raphael, Ron Shamir, Roded Sharan, Simone Zaccaria, Meirav Zehavi, Ron Zeira

Abstract

Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the chromosome's copy-number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis and prognosis. We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from profile [Formula: see text] to [Formula: see text] by the minimum number of events needed to transform [Formula: see text] into [Formula: see text]. Given two profiles, our first problem aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal vertices are labeled by ancestral profiles such that the sum of edge distances is minimum. For the former problem we give a pseudo-polynomial dynamic programming algorithm that is linear in the profile length, and an integer linear program formulation. For the latter problem we show it is NP-hard and give an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and quality of our algorithms on simulated instances. https://github.com/raphael-group/CNT-ILP.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 18%
Researcher 6 16%
Student > Ph. D. Student 6 16%
Student > Bachelor 4 11%
Student > Doctoral Student 2 5%
Other 0 0%
Unknown 13 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 26%
Computer Science 6 16%
Agricultural and Biological Sciences 5 13%
Medicine and Dentistry 3 8%
Engineering 1 3%
Other 0 0%
Unknown 13 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2019.
All research outputs
#15,329,366
of 23,577,761 outputs
Outputs from Algorithms for Molecular Biology
#126
of 251 outputs
Outputs of similar age
#186,630
of 311,764 outputs
Outputs of similar age from Algorithms for Molecular Biology
#1
of 5 outputs
Altmetric has tracked 23,577,761 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 251 research outputs from this source. They receive a mean Attention Score of 3.3. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 311,764 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 5 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them