↓ Skip to main content

MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway

Overview of attention for article published in Molecular Cancer, May 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
71 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MicroRNA-608 inhibits proliferation of bladder cancer via AKT/FOXO3a signaling pathway
Published in
Molecular Cancer, May 2017
DOI 10.1186/s12943-017-0664-1
Pubmed ID
Authors

Zhen Liang, Xiao Wang, Xin Xu, Bo Xie, Alin Ji, Shuai Meng, Shiqi Li, Yi Zhu, Jian Wu, Zhenghui Hu, Yiwei Lin, Xiangyi Zheng, Liping Xie, Ben Liu

Abstract

Current evidence indicates that miR-608 is widely down-regulated in various malignant tumors including liver cancer, colon cancer, lung cancer and glioma, and acts as a tumor suppressor by inhibiting cell proliferation, invasion and migration or by promoting apoptosis. The specific biological function of miR-608 in bladder cancer is still unknown. qRT-PCR and Chromogenic in Situ Hybridization (CISH) was conducted to assess the expression of miR-608 in paired BCa tissues and adjacent non-tumor bladder urothelial tissues. Bisulfite sequencing PCR was used for DNA methylation analysis. CCK-8, colony formation and flow cytometry assays were performed, and a xenograft model was studied. Immunohistochemistry staining was performed with peroxidase and DAB. The target of miR-608 was validated with a dual-luciferase reporter assay, quantitative RT-PCR, and Western blotting. miR-608 is frequently down-regulated in human BCa tissues. The methylation status of CpG islands is involved in the regulation of miR-608 expression. Overexpression of miR-608 inhibits the proliferation and tumorigenesis of BCa cells in vitro and in vivo. Additionally, up-regulation of miR-608 in BCa cells induces G1-phase arrest through AKT/FOXO3a signaling. In contrast, down-regulation of miR-608 promotes proliferation and cell cycle progression in BCa cells. Moreover, the expression of FLOT1 was directly inhibited by miR-608, the down-regulation of FLOT1 induced by siFLOT1 could be significantly reversed by miR-608 inhibitor. Similarly, the up-regulation of FLOT1 by FLOT1 overexpression plasmid (pFLOT1) could also reverse the suppressed cell proliferation caused by miR-608. miR-608 is a potential tumor suppressor in BCa, and the restoration of miR-608 might be a promising therapeutic option for BCa.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 27%
Student > Bachelor 3 12%
Librarian 2 8%
Student > Ph. D. Student 2 8%
Unspecified 1 4%
Other 3 12%
Unknown 8 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 19%
Medicine and Dentistry 5 19%
Agricultural and Biological Sciences 2 8%
Unspecified 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 2 8%
Unknown 10 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2017.
All research outputs
#20,425,762
of 22,977,819 outputs
Outputs from Molecular Cancer
#1,487
of 1,728 outputs
Outputs of similar age
#272,760
of 313,455 outputs
Outputs of similar age from Molecular Cancer
#26
of 35 outputs
Altmetric has tracked 22,977,819 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,728 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,455 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.