↓ Skip to main content

CMOST: an open-source framework for the microsimulation of colorectal cancer screening strategies

Overview of attention for article published in BMC Medical Informatics and Decision Making, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
CMOST: an open-source framework for the microsimulation of colorectal cancer screening strategies
Published in
BMC Medical Informatics and Decision Making, June 2017
DOI 10.1186/s12911-017-0458-9
Pubmed ID
Authors

Meher K. Prakash, Brian Lang, Henriette Heinrich, Piero V. Valli, Peter Bauerfeind, Amnon Sonnenberg, Niko Beerenwinkel, Benjamin Misselwitz

Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related mortality. CRC incidence and mortality can be reduced by several screening strategies, including colonoscopy, but randomized CRC prevention trials face significant obstacles such as the need for large study populations with long follow-up. Therefore, CRC screening strategies will likely be designed and optimized based on computer simulations. Several computational microsimulation tools have been reported for estimating efficiency and cost-effectiveness of CRC prevention. However, none of these tools is publicly available. There is a need for an open source framework to answer practical questions including testing of new screening interventions and adapting findings to local conditions. We developed and implemented a new microsimulation model, Colon Modeling Open Source Tool (CMOST), for modeling the natural history of CRC, simulating the effects of CRC screening interventions, and calculating the resulting costs. CMOST facilitates automated parameter calibration against epidemiological adenoma prevalence and CRC incidence data. Predictions of CMOST were highly similar compared to a large endoscopic CRC prevention study as well as predictions of existing microsimulation models. We applied CMOST to calculate the optimal timing of a screening colonoscopy. CRC incidence and mortality are reduced most efficiently by a colonoscopy between the ages of 56 and 59; while discounted life years gained (LYG) is maximal at 49-50 years. With a dwell time of 13 years, the most cost-effective screening is at 59 years, at $17,211 discounted USD per LYG. While cost-efficiency varied according to dwell time it did not influence the optimal time point of screening interventions within the tested range. Predictions of CMOST are highly similar compared to a randomized CRC prevention trial as well as those of other microsimulation tools. This open source tool will enable health-economics analyses in for various countries, health-care scenarios and CRC prevention strategies. CMOST is freely available under the GNU General Public License at https://gitlab.com/misselwb/CMOST.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 4%
Unknown 25 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 35%
Researcher 5 19%
Unspecified 4 15%
Student > Postgraduate 4 15%
Other 2 8%
Other 2 8%
Readers by discipline Count As %
Medicine and Dentistry 7 27%
Unspecified 5 19%
Social Sciences 3 12%
Mathematics 3 12%
Engineering 2 8%
Other 6 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2017.
All research outputs
#6,490,523
of 11,337,680 outputs
Outputs from BMC Medical Informatics and Decision Making
#622
of 1,049 outputs
Outputs of similar age
#127,798
of 267,279 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#18
of 31 outputs
Altmetric has tracked 11,337,680 research outputs across all sources so far. This one is in the 40th percentile – i.e., 40% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,049 research outputs from this source. They receive a mean Attention Score of 4.8. This one is in the 34th percentile – i.e., 34% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,279 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.