↓ Skip to main content

Protein Tyrosine Phosphatases

Overview of attention for book
Cover of 'Protein Tyrosine Phosphatases'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 The Extended Family of Protein Tyrosine Phosphatases
  3. Altmetric Badge
    Chapter 2 Global RT-PCR and RT-qPCR Analysis of the mRNA Expression of the Human PTPome
  4. Altmetric Badge
    Chapter 3 Expression, Purification, and Kinetic Analysis of PTP Domains
  5. Altmetric Badge
    Chapter 4 Peptide Microarrays for Real-Time Kinetic Profiling of Tyrosine Phosphatase Activity of Recombinant Phosphatases and Phosphatases in Lysates of Cells or Tissue Samples
  6. Altmetric Badge
    Chapter 5 Tailor-Made Protein Tyrosine Phosphatases: In Vitro Site-Directed Mutagenesis of PTEN and PTPRZ-B
  7. Altmetric Badge
    Chapter 6 Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates
  8. Altmetric Badge
    Chapter 7 Assessing the Biological Activity of the Glucan Phosphatase Laforin
  9. Altmetric Badge
    Chapter 8 Discovery and Evaluation of PRL Trimer Disruptors for Novel Anticancer Agents
  10. Altmetric Badge
    Chapter 9 Analyzing Pseudophosphatase Function
  11. Altmetric Badge
    Chapter 10 Crystallization of PTP Domains
  12. Altmetric Badge
    Chapter 11 NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases
  13. Altmetric Badge
    Chapter 12 Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs)
  14. Altmetric Badge
    Chapter 13 Protein Tyrosine Phosphatases
  15. Altmetric Badge
    Chapter 14 Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates
  16. Altmetric Badge
    Chapter 15 Protein Tyrosine Phosphatases
  17. Altmetric Badge
    Chapter 16 Production of Osteoclasts for Studying Protein Tyrosine Phosphatase Signaling
  18. Altmetric Badge
    Chapter 17 Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis
  19. Altmetric Badge
    Chapter 18 Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis
  20. Altmetric Badge
    Chapter 19 Studying Protein-Tyrosine Phosphatases in Zebrafish
  21. Altmetric Badge
    Chapter 20 Protein Tyrosine Phosphatases
  22. Altmetric Badge
    Chapter 21 Protein Tyrosine Phosphatases
Attention for Chapter 18: Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis
Altmetric Badge

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis
Chapter number 18
Book title
Protein Tyrosine Phosphatases
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3746-2_18
Pubmed ID
Book ISBNs
978-1-4939-3744-8, 978-1-4939-3746-2
Authors

Mathieu Amand, Charlotte Erpicum, Christine Gilles, Agnès Noël, Souad Rahmouni, Amand, Mathieu, Erpicum, Charlotte, Gilles, Christine, Noël, Agnès, Rahmouni, Souad

Abstract

Therapeutic perspectives targeting angiogenesis in cancer stimulated an intense investigation of the mechanisms triggering and governing angiogenic processes. Several publications have highlighted the importance of typical dual-specificity phosphatases (DSPs) or MKPs in endothelial cells and their role in controlling different biological functions implicated in angiogenesis such as migration, proliferation, apoptosis, tubulogenesis, and cell adhesion. However, among atypical DSPs, the only one investigated in angiogenesis was DUSP3. We recently identified this DSP as a new key player in endothelial cells and angiogenesis. In this chapter we provide with detailed protocols and models used to investigate the role of DUSP3 in endothelial cells and angiogenesis. We start the chapter with an overview of the role of several DSPs in angiogenesis. We continue with providing a full description of a highly efficient transfection protocol to deplete DUSP3 using small interfering RNA (siRNA) in the primary human umbilical vein endothelial cells (HUVEC). We next describe the major assays used to investigate different processes involved in angiogenesis such as tube formation assay, proliferation assay and spheroids sprouting assay. We finish the chapter by validating our results in DUSP3-knockout mice using in vivo angiogenesis assays such as Matrigel plug and Lewis lung carcinoma cell subcutaneous xenograft model followed by anti-CD31 immunofluorescence and ex vivo aortic ring assay. All methods described can be adapted to other phosphatases and signaling molecules.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 36%
Student > Bachelor 2 18%
Student > Doctoral Student 1 9%
Researcher 1 9%
Professor > Associate Professor 1 9%
Other 1 9%
Unknown 1 9%
Readers by discipline Count As %
Medicine and Dentistry 3 27%
Agricultural and Biological Sciences 3 27%
Biochemistry, Genetics and Molecular Biology 2 18%
Pharmacology, Toxicology and Pharmaceutical Science 1 9%
Unknown 2 18%