↓ Skip to main content

Protein Crystallography

Overview of attention for book
Cover of 'Protein Crystallography'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag
  3. Altmetric Badge
    Chapter 2 Protein Crystallization
  4. Altmetric Badge
    Chapter 3 Advanced Methods of Protein Crystallization
  5. Altmetric Badge
    Chapter 4 The “Sticky Patch” Model of Crystallization and Modification of Proteins for Enhanced Crystallizability
  6. Altmetric Badge
    Chapter 5 Crystallization of Membrane Proteins: An Overview
  7. Altmetric Badge
    Chapter 6 Locating and Visualizing Crystals for X-Ray Diffraction Experiments
  8. Altmetric Badge
    Chapter 7 Collection of X-Ray Diffraction Data from Macromolecular Crystals
  9. Altmetric Badge
    Chapter 8 Identifying and Overcoming Crystal Pathologies: Disorder and Twinning
  10. Altmetric Badge
    Chapter 9 Applications of X-Ray Micro-Beam for Data Collection
  11. Altmetric Badge
    Chapter 10 Serial Synchrotron X-Ray Crystallography (SSX)
  12. Altmetric Badge
    Chapter 11 Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources
  13. Altmetric Badge
    Chapter 12 Structure Determination Using X-Ray Free-Electron Laser Pulses
  14. Altmetric Badge
    Chapter 13 Processing of XFEL Data
  15. Altmetric Badge
    Chapter 14 Many Ways to Derivatize Macromolecules and Their Crystals for Phasing
  16. Altmetric Badge
    Chapter 15 Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX
  17. Altmetric Badge
    Chapter 16 Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis
  18. Altmetric Badge
    Chapter 17 Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography
  19. Altmetric Badge
    Chapter 18 Acknowledging Errors: Advanced Molecular Replacement with Phaser
  20. Altmetric Badge
    Chapter 19 Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems
  21. Altmetric Badge
    Chapter 20 Radiation Damage in Macromolecular Crystallography
  22. Altmetric Badge
    Chapter 21 Boxes of Model Building and Visualization
  23. Altmetric Badge
    Chapter 22 Structure Refinement at Atomic Resolution
  24. Altmetric Badge
    Chapter 23 Low Resolution Refinement of Atomic Models Against Crystallographic Data
  25. Altmetric Badge
    Chapter 24 Stereochemistry and Validation of Macromolecular Structures
  26. Altmetric Badge
    Chapter 25 Validation of Protein–Ligand Crystal Structure Models: Small Molecule and Peptide Ligands
  27. Altmetric Badge
    Chapter 26 Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive
  28. Altmetric Badge
    Chapter 27 Databases, Repositories, and Other Data Resources in Structural Biology
Attention for Chapter 21: Boxes of Model Building and Visualization
Altmetric Badge

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Boxes of Model Building and Visualization
Chapter number 21
Book title
Protein Crystallography
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7000-1_21
Pubmed ID
Book ISBNs
978-1-4939-6998-2, 978-1-4939-7000-1
Authors

Dušan Turk

Editors

Alexander Wlodawer, Zbigniew Dauter, Mariusz Jaskolski

Abstract

Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 21%
Researcher 3 21%
Student > Ph. D. Student 2 14%
Professor 2 14%
Student > Master 2 14%
Other 1 7%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 50%
Arts and Humanities 1 7%
Environmental Science 1 7%
Agricultural and Biological Sciences 1 7%
Psychology 1 7%
Other 1 7%
Unknown 2 14%