↓ Skip to main content

Protein Crystallography

Overview of attention for book
Cover of 'Protein Crystallography'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Expression and Purification of Recombinant Proteins in Escherichia coli with a His6 or Dual His6-MBP Tag
  3. Altmetric Badge
    Chapter 2 Protein Crystallization
  4. Altmetric Badge
    Chapter 3 Advanced Methods of Protein Crystallization
  5. Altmetric Badge
    Chapter 4 The “Sticky Patch” Model of Crystallization and Modification of Proteins for Enhanced Crystallizability
  6. Altmetric Badge
    Chapter 5 Crystallization of Membrane Proteins: An Overview
  7. Altmetric Badge
    Chapter 6 Locating and Visualizing Crystals for X-Ray Diffraction Experiments
  8. Altmetric Badge
    Chapter 7 Collection of X-Ray Diffraction Data from Macromolecular Crystals
  9. Altmetric Badge
    Chapter 8 Identifying and Overcoming Crystal Pathologies: Disorder and Twinning
  10. Altmetric Badge
    Chapter 9 Applications of X-Ray Micro-Beam for Data Collection
  11. Altmetric Badge
    Chapter 10 Serial Synchrotron X-Ray Crystallography (SSX)
  12. Altmetric Badge
    Chapter 11 Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources
  13. Altmetric Badge
    Chapter 12 Structure Determination Using X-Ray Free-Electron Laser Pulses
  14. Altmetric Badge
    Chapter 13 Processing of XFEL Data
  15. Altmetric Badge
    Chapter 14 Many Ways to Derivatize Macromolecules and Their Crystals for Phasing
  16. Altmetric Badge
    Chapter 15 Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX
  17. Altmetric Badge
    Chapter 16 Contemporary Use of Anomalous Diffraction in Biomolecular Structure Analysis
  18. Altmetric Badge
    Chapter 17 Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography
  19. Altmetric Badge
    Chapter 18 Acknowledging Errors: Advanced Molecular Replacement with Phaser
  20. Altmetric Badge
    Chapter 19 Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems
  21. Altmetric Badge
    Chapter 20 Radiation Damage in Macromolecular Crystallography
  22. Altmetric Badge
    Chapter 21 Boxes of Model Building and Visualization
  23. Altmetric Badge
    Chapter 22 Structure Refinement at Atomic Resolution
  24. Altmetric Badge
    Chapter 23 Low Resolution Refinement of Atomic Models Against Crystallographic Data
  25. Altmetric Badge
    Chapter 24 Stereochemistry and Validation of Macromolecular Structures
  26. Altmetric Badge
    Chapter 25 Validation of Protein–Ligand Crystal Structure Models: Small Molecule and Peptide Ligands
  27. Altmetric Badge
    Chapter 26 Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive
  28. Altmetric Badge
    Chapter 27 Databases, Repositories, and Other Data Resources in Structural Biology
Attention for Chapter 15: Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (73rd percentile)

Mentioned by

wikipedia
1 Wikipedia page

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
7 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Experimental Phasing: Substructure Solution and Density Modification as Implemented in SHELX
Chapter number 15
Book title
Protein Crystallography
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-7000-1_15
Pubmed ID
Book ISBNs
978-1-4939-6998-2, 978-1-4939-7000-1
Authors

Andrea Thorn, Thorn, Andrea

Editors

Alexander Wlodawer, Zbigniew Dauter, Mariusz Jaskolski

Abstract

This chapter describes experimental phasing methods as implemented in SHELX. After introducing fundamental concepts underlying all experimental phasing approaches, the methods used by SHELXC/D/E are described in greater detail, such as dual-space direct methods, Patterson seeding and density modification with the sphere of influence algorithm. Intensity differences from data for experimental phasing can also be used for the generation and usage of difference maps with ANODE for validation and phasing purposes. A short section describes how molecular replacement can be combined with experimental phasing methods. The second half covers practical challenges, such as prerequisites for successful experimental phasing, evaluation of potential solutions, and what to do if substructure search or density modification fails. It is also shown how auto-tracing in SHELXE can improve automation and how it ties in with automatic model building after phasing.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 7 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 7 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 43%
Student > Bachelor 2 29%
Professor > Associate Professor 1 14%
Unknown 1 14%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 57%
Chemistry 2 29%
Computer Science 1 14%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 December 2021.
All research outputs
#7,427,950
of 22,707,247 outputs
Outputs from Methods in molecular biology
#2,304
of 13,078 outputs
Outputs of similar age
#140,802
of 419,539 outputs
Outputs of similar age from Methods in molecular biology
#246
of 1,074 outputs
Altmetric has tracked 22,707,247 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,078 research outputs from this source. They receive a mean Attention Score of 3.3. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,539 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 1,074 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 73% of its contemporaries.