↓ Skip to main content

Developing a data-driven spatial approach to assessment of neighbourhood influences on the spatial distribution of myocardial infarction

Overview of attention for article published in International Journal of Health Geographics, June 2017
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Developing a data-driven spatial approach to assessment of neighbourhood influences on the spatial distribution of myocardial infarction
Published in
International Journal of Health Geographics, June 2017
DOI 10.1186/s12942-017-0094-8
Pubmed ID
Authors

Wahida Kihal-Talantikite, Christiane Weber, Gaelle Pedrono, Claire Segala, Dominique Arveiler, Clive E. Sabel, Séverine Deguen, Denis Bard

Abstract

There is a growing understanding of the role played by 'neighbourhood' in influencing health status. Various neighbourhood characteristics-such as socioeconomic environment, availability of amenities, and social cohesion, may be combined-and this could contribute to rising health inequalities. This study aims to combine a data-driven approach with clustering analysis techniques, to investigate neighbourhood characteristics that may explain the geographical distribution of the onset of myocardial infarction (MI) risk. All MI events in patients aged 35-74 years occurring in the Strasbourg metropolitan area (SMA), from January 1, 2000 to December 31, 2007 were obtained from the Bas-Rhin coronary heart disease register. All cases were geocoded to the census block for the residential address. Each areal unit, characterized by contextual neighbourhood profile, included socioeconomic environment, availability of amenities (including leisure centres, libraries and parks, and transport) and psychosocial environment as well as specific annual rates standardized (per 100,000 inhabitants). A spatial scan statistic implemented in SaTScan was then used to identify statistically significant spatial clusters of high and low risk of MI. MI incidence was non-randomly spatially distributed, with a cluster of high risk of MI in the northern part of the SMA [relative risk (RR) = 1.70, p = 0.001] and a cluster of low risk of MI located in the first and second periphery of SMA (RR 0.04, p value  =  0.001). Our findings suggest that the location of low MI risk is characterized by a high socioeconomic level and a low level of access to various amenities; conversely, the location of high MI risk is characterized by a high level of socioeconomic deprivation-despite the fact that inhabitants have good access to the local recreational and leisure infrastructure. Our data-driven approach highlights how the different contextual dimensions were inter-combined in the SMA. Our spatial approach allowed us to identify the neighbourhood characteristics of inhabitants living within a cluster of high versus low MI risk. Therefore, spatial data-driven analyses of routinely-collected data georeferenced by various sources may serve to guide policymakers in defining and promoting targeted actions at fine spatial level.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 70 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 20%
Student > Ph. D. Student 10 14%
Researcher 9 13%
Student > Doctoral Student 7 10%
Student > Bachelor 4 6%
Other 10 14%
Unknown 16 23%
Readers by discipline Count As %
Medicine and Dentistry 14 20%
Social Sciences 12 17%
Psychology 5 7%
Engineering 3 4%
Computer Science 2 3%
Other 13 19%
Unknown 21 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 June 2017.
All research outputs
#20,427,593
of 22,979,862 outputs
Outputs from International Journal of Health Geographics
#549
of 629 outputs
Outputs of similar age
#276,079
of 317,348 outputs
Outputs of similar age from International Journal of Health Geographics
#8
of 9 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 629 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 317,348 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.