↓ Skip to main content

The Bcl-2 Homolog Nrz Inhibits Binding of IP3 to Its Receptor to Control Calcium Signaling During Zebrafish Epiboly

Overview of attention for article published in Science Signaling, February 2014
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
13 tweeters
facebook
1 Facebook page

Readers on

mendeley
22 Mendeley
citeulike
1 CiteULike
Title
The Bcl-2 Homolog Nrz Inhibits Binding of IP3 to Its Receptor to Control Calcium Signaling During Zebrafish Epiboly
Published in
Science Signaling, February 2014
DOI 10.1126/scisignal.2004480
Pubmed ID
Authors

Bonneau, Benjamin, Nougarede, Adrien, Prudent, Julien, Popgeorgiev, Nikolay, Peyrieras, Nadine, Rimokh, Ruth, Gillet, Germain, Benjamin Bonneau, Adrien Nougarède, Julien Prudent, Nikolay Popgeorgiev, Nadine Peyriéras, Ruth Rimokh, Germain Gillet

Abstract

Members of the Bcl-2 protein family regulate mitochondrial membrane permeability and also localize to the endoplasmic reticulum where they control Ca(2+) homeostasis by interacting with inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs). In zebrafish, Bcl-2-like 10 (Nrz) is required for Ca(2+) signaling during epiboly and gastrulation. We characterized the mechanism by which Nrz controls IP3-mediated Ca(2+) release during this process. We showed that Nrz was phosphorylated during early epiboly, and that in embryos in which Nrz was knocked down, reconstitution with Nrz bearing mutations designed to prevent its phosphorylation disrupted cyclic Ca(2+) transients and the assembly of the actin-myosin ring and led to epiboly arrest. In cultured cells, wild-type Nrz, but not Nrz with phosphomimetic mutations, interacted with the IP3 binding domain of IP3R1, inhibited binding of IP3 to IP3R1, and prevented histamine-induced increases in cytosolic Ca(2+). Collectively, these data suggest that Nrz phosphorylation is necessary for the generation of IP3-mediated Ca(2+) transients and the formation of circumferential actin-myosin cables required for epiboly. Thus, in addition to their role in apoptosis, by tightly regulating Ca(2+) signaling, Bcl-2 family members participate in the cellular events associated with early vertebrate development, including cytoskeletal dynamics and cell movement.

Twitter Demographics

The data shown below were collected from the profiles of 13 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 32%
Professor > Associate Professor 4 18%
Student > Bachelor 3 14%
Researcher 3 14%
Student > Postgraduate 2 9%
Other 3 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 55%
Biochemistry, Genetics and Molecular Biology 7 32%
Medicine and Dentistry 2 9%
Unspecified 1 5%

Attention Score in Context

This research output has an Altmetric Attention Score of 9. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2014.
All research outputs
#589,373
of 4,898,339 outputs
Outputs from Science Signaling
#398
of 1,579 outputs
Outputs of similar age
#20,002
of 139,812 outputs
Outputs of similar age from Science Signaling
#37
of 72 outputs
Altmetric has tracked 4,898,339 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,579 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has gotten more attention than average, scoring higher than 74% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 139,812 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 72 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.