↓ Skip to main content

Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery

Overview of attention for article published in Cochrane database of systematic reviews, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Gases for establishing pneumoperitoneum during laparoscopic abdominal surgery
Published in
Cochrane database of systematic reviews, June 2017
DOI 10.1002/14651858.cd009569.pub3
Pubmed ID
Authors

Tianwu Yu, Yao Cheng, Xiaomei Wang, Bing Tu, Nansheng Cheng, Jianping Gong, Lian Bai

Abstract

This is an update of the review published in 2013.Laparoscopic surgery is now widely performed to treat various abdominal diseases. Currently, carbon dioxide is the most frequently used gas for insufflation of the abdominal cavity (pneumoperitoneum). Although carbon dioxide meets most of the requirements for pneumoperitoneum, the absorption of carbon dioxide may be associated with adverse events. People with high anaesthetic risk are more likely to experience cardiopulmonary complications and adverse events, for example hypercapnia and acidosis, which has to be avoided by hyperventilation. Therefore, other gases have been introduced as alternatives to carbon dioxide for establishing pneumoperitoneum. To assess the safety, benefits, and harms of different gases (i.e. carbon dioxide, helium, argon, nitrogen, nitrous oxide, and room air) used for establishing pneumoperitoneum in participants undergoing laparoscopic general abdominal or gynaecological pelvic surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2016, Issue 9), Ovid MEDLINE (1950 to September 2016), Ovid Embase (1974 to September 2016), Science Citation Index Expanded (1970 to September 2016), Chinese Biomedical Literature Database (CBM) (1978 to September 2016), ClinicalTrials.gov (September 2016), and World Health Organization International Clinical Trials Registry Platform (September 2016). We included randomised controlled trials (RCTs) comparing different gases for establishing pneumoperitoneum in participants (irrespective of age, sex, or race) undergoing laparoscopic abdominal or gynaecological pelvic surgery under general anaesthesia. Two review authors identified the trials for inclusion, collected the data, and assessed the risk of bias independently. We performed the meta-analyses using Review Manager 5. We calculated risk ratio (RR) for dichotomous outcomes (or Peto odds ratio for very rare outcomes), and mean difference (MD) or standardised mean difference (SMD) for continuous outcomes with 95% confidence intervals (CI). We used GRADE to rate the quality of evidence, MAIN RESULTS: We included nine RCTs, randomising 519 participants, comparing different gases for establishing pneumoperitoneum: nitrous oxide (three trials), helium (five trials), or room air (one trial) was compared to carbon dioxide. Three trials randomised participants to nitrous oxide pneumoperitoneum (100 participants) or carbon dioxide pneumoperitoneum (96 participants). None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of nitrous oxide and carbon dioxide on cardiopulmonary complications (RR 2.00, 95% CI 0.38 to 10.43; two studies; 140 participants; very low quality of evidence), or surgical morbidity (RR 1.01, 95% CI 0.18 to 5.71; two studies; 143 participants; very low quality of evidence). There were no serious adverse events related to either nitrous oxide or carbon dioxide pneumoperitoneum (three studies; 196 participants; very low quality of evidence). We could not combine data from two trials (140 participants) which individually showed lower pain scores (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain) with nitrous oxide pneumoperitoneum at various time points on the first postoperative day, and this was rated asvery low quality .Four trials randomised participants to helium pneumoperitoneum (69 participants) or carbon dioxide pneumoperitoneum (75 participants) and one trial involving 33 participants did not state the number of participants in each group. None of the trials was at low risk of bias. There was insufficient evidence to determine the effects of helium or carbon dioxide on cardiopulmonary complications (RR 1.46, 95% CI 0.35 to 6.12; three studies; 128 participants; very low quality of evidence) or pain scores (visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain; MD 0.49 cm, 95% CI -0.28 to 1.26; two studies; 108 participants; very low quality of evidence). There were three serious adverse events (subcutaneous emphysema) related to helium pneumoperitoneum (three studies; 128 participants; very low quality of evidence).One trial randomised participants to room air pneumoperitoneum (70 participants) or carbon dioxide pneumoperitoneum (76 participants). The trial was at unclear risk of bias. There were no cardiopulmonary complications or serious adverse events observed related to either room air or carbon dioxide pneumoperitoneum (both outcomes very low quality of evidence). The evidence of lower hospital costs and reduced pain during the first postoperative day with room air pneumoperitoneum compared with carbon dioxide pneumoperitoneum (a difference of about one visual analogue score on a scale of 1 to 10 with lower numbers indicating less pain, was rated as very low quality of evidence. The quality of the current evidence is very low. The effects of nitrous oxide and helium pneumoperitoneum compared with carbon dioxide pneumoperitoneum are uncertain. Evidence from one trial of small sample size suggests that room air pneumoperitoneum may decrease hospital costs in people undergoing laparoscopic abdominal surgery. The safety of nitrous oxide, helium, and room air pneumoperitoneum has yet to be established.Further trials on this topic are needed, and should compare various gases (i.e. nitrous oxide, helium, argon, nitrogen, and room air) with carbon dioxide under standard pressure pneumoperitoneum with cold gas insufflation for people with high anaesthetic risk. Future trials should include outcomes such as complications, serious adverse events, quality of life, and pain.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 76 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 12 16%
Student > Bachelor 8 11%
Student > Postgraduate 7 9%
Researcher 7 9%
Other 6 8%
Other 17 22%
Unknown 19 25%
Readers by discipline Count As %
Medicine and Dentistry 30 39%
Nursing and Health Professions 9 12%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Engineering 3 4%
Biochemistry, Genetics and Molecular Biology 2 3%
Other 8 11%
Unknown 21 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2017.
All research outputs
#8,267,536
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#8,841
of 10,519 outputs
Outputs of similar age
#151,482
of 265,043 outputs
Outputs of similar age from Cochrane database of systematic reviews
#229
of 259 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. This one is in the 23rd percentile – i.e., 23% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one is in the 10th percentile – i.e., 10% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,043 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 259 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.