↓ Skip to main content

3D Cell Culture

Overview of attention for book
Cover of '3D Cell Culture'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 3D Cell Culture: An Introduction
  3. Altmetric Badge
    Chapter 2 Preparation of Decellularized Biological Scaffolds for 3D Cell Culture
  4. Altmetric Badge
    Chapter 3 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix
  5. Altmetric Badge
    Chapter 4 Hydrogel-Based In Vitro Models of Tumor Angiogenesis
  6. Altmetric Badge
    Chapter 5 Generation of Induced Pluripotent Stem Cells in Defined Three-Dimensional Hydrogels
  7. Altmetric Badge
    Chapter 6 Calcium Phosphate Foams: Potential Scaffolds for Bone Tissue Modeling in Three Dimensions
  8. Altmetric Badge
    Chapter 7 Establishment of 3D Intestinal Organoid Cultures from Intestinal Stem Cells
  9. Altmetric Badge
    Chapter 8 3D Coculture of Mammary Organoids with Fibrospheres: A Model for Studying Epithelial–Stromal Interactions During Mammary Branching Morphogenesis
  10. Altmetric Badge
    Chapter 9 An Organotypic 3D Assay for Primary Human Mammary Epithelial Cells that Recapitulates Branching Morphogenesis
  11. Altmetric Badge
    Chapter 10 3D Primary Culture Model to Study Human Mammary Development
  12. Altmetric Badge
    Chapter 11 Lungosphere Assay: 3D Culture of Lung Epithelial Stem/Progenitor Cells
  13. Altmetric Badge
    Chapter 12 3D Hanging Drop Culture to Establish Prostate Cancer Organoids
  14. Altmetric Badge
    Chapter 13 3D-Dynamic Culture Models of Multiple Myeloma
  15. Altmetric Badge
    Chapter 14 Preparation of a Three-Dimensional Full Thickness Skin Equivalent
  16. Altmetric Badge
    Chapter 15 Analysis of Breast Cancer Cell Invasion Using an Organotypic Culture System
  17. Altmetric Badge
    Chapter 16 3D Coculture Model of the Brain Parenchyma–Metastasis Interface of Brain Metastasis
  18. Altmetric Badge
    Chapter 17 3D Neural Culture in Dual Hydrogel Systems
  19. Altmetric Badge
    Chapter 18 3D Cell Culture in Micropatterned Hydrogels Prepared by Photomask, Microneedle, or Soft Lithography Techniques
  20. Altmetric Badge
    Chapter 19 3D Stem Cell Niche Engineering via Two-Photon Laser Polymerization
  21. Altmetric Badge
    Chapter 20 Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion
  22. Altmetric Badge
    Chapter 21 Forecasting smog-related health hazard based on social media and physical sensor
  23. Altmetric Badge
    Chapter 22 High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform
  24. Altmetric Badge
    Chapter 23 High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells
  25. Altmetric Badge
    Chapter 24 3D Anastomosed Microvascular Network Model with Living Capillary Networks and Endothelial Cell-Lined Microfluidic Channels
  26. Altmetric Badge
    Chapter 25 Human Lung Small Airway-on-a-Chip Protocol
  27. Altmetric Badge
    Chapter 26 Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs
  28. Altmetric Badge
    Chapter 27 Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink
  29. Altmetric Badge
    Chapter 28 Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel
  30. Altmetric Badge
    Chapter 29 Real-Time Cell Cycle Imaging in a 3D Cell Culture Model of Melanoma
  31. Altmetric Badge
    Chapter 30 Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy
  32. Altmetric Badge
    Chapter 31 Quantitative Phenotypic Image Analysis of Three-Dimensional Organotypic Cultures
  33. Altmetric Badge
    Chapter 32 Erratum to: Generation of Induced Pluripotent Stem Cells in Defined Three-Dimensional Hydrogels
Attention for Chapter 20: Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion
Altmetric Badge

Citations

dimensions_citation
29 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Microfluidic-Based Generation of 3D Collagen Spheres to Investigate Multicellular Spheroid Invasion
Chapter number 20
Book title
3D Cell Culture
Published in
Methods in molecular biology, June 2017
DOI 10.1007/978-1-4939-7021-6_20
Pubmed ID
Book ISBNs
978-1-4939-7019-3, 978-1-4939-7021-6
Authors

Fabien Bertillot, Youmna Attieh, Morgan Delarue, Basile G. Gurchenkov, Stephanie Descroix, Danijela Matic Vignjevic Ph.D., Davide Ferraro, Danijela Matic Vignjevic

Editors

Zuzana Koledova

Abstract

During tumor progression, cancer cells acquire the ability to escape the primary tumor and invade adjacent tissues. They migrate through the stroma to reach blood or lymphatics vessels that will allow them to disseminate throughout the body and form metastasis at distant organs. To assay invasion capacity of cells in vitro, multicellular spheroids of cancer cells, mimicking primary tumor, are commonly embedded in collagen I extracellular matrix, which mimics the stroma. However, due to their higher density, spheroids tend to sink at the bottom of the collagen droplets, resulting in the spreading of the cells on two dimensions. We developed an innovative method based on droplet microfluidics to embed and control the position of multicellular spheroids inside spherical droplets of collagen. In this method cancer cells are exposed to a uniform three-dimensional (3D) collagen environment resulting in 3D cell invasion.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 33%
Student > Ph. D. Student 4 17%
Student > Bachelor 3 13%
Other 1 4%
Student > Master 1 4%
Other 1 4%
Unknown 6 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 25%
Agricultural and Biological Sciences 4 17%
Physics and Astronomy 3 13%
Engineering 2 8%
Neuroscience 1 4%
Other 1 4%
Unknown 7 29%