↓ Skip to main content

Aerobic exercise training for adults with fibromyalgia

Overview of attention for article published in Cochrane database of systematic reviews, June 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
569 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Aerobic exercise training for adults with fibromyalgia
Published in
Cochrane database of systematic reviews, June 2017
DOI 10.1002/14651858.cd012700
Pubmed ID
Authors

Julia Bidonde, Angela J Busch, Candice L Schachter, Tom J Overend, Soo Y Kim, Suelen M. Góes, Catherine Boden, Heather JA Foulds

Abstract

Exercise training is commonly recommended for individuals with fibromyalgia. This review is one of a series of reviews about exercise training for people with fibromyalgia that will replace the "Exercise for treating fibromyalgia syndrome" review first published in 2002. • To evaluate the benefits and harms of aerobic exercise training for adults with fibromyalgia• To assess the following specific comparisons ० Aerobic versus control conditions (eg, treatment as usual, wait list control, physical activity as usual) ० Aerobic versus aerobic interventions (eg, running vs brisk walking) ० Aerobic versus non-exercise interventions (eg, medications, education) We did not assess specific comparisons involving aerobic exercise versus other exercise interventions (eg, resistance exercise, aquatic exercise, flexibility exercise, mixed exercise). Other systematic reviews have examined or will examine these comparisons (Bidonde 2014; Busch 2013). We searched the Cochrane Library, MEDLINE, Embase, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Physiotherapy Evidence Database (PEDro), Thesis and Dissertation Abstracts, the Allied and Complementary Medicine Database (AMED), the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP), and the ClinicalTrials.gov registry up to June 2016, unrestricted by language, and we reviewed the reference lists of retrieved trials to identify potentially relevant trials. We included randomized controlled trials (RCTs) in adults with a diagnosis of fibromyalgia that compared aerobic training interventions (dynamic physical activity that increases breathing and heart rate to submaximal levels for a prolonged period) versus no exercise or another intervention. Major outcomes were health-related quality of life (HRQL), pain intensity, stiffness, fatigue, physical function, withdrawals, and adverse events. Two review authors independently selected trials for inclusion, extracted data, performed a risk of bias assessment, and assessed the quality of the body of evidence for major outcomes using the GRADE approach. We used a 15% threshold for calculation of clinically relevant differences between groups. We included 13 RCTs (839 people). Studies were at risk of selection, performance, and detection bias (owing to lack of blinding for self-reported outcomes) and had low risk of attrition and reporting bias. We prioritized the findings when aerobic exercise was compared with no exercise control and present them fully here.Eight trials (with 456 participants) provided low-quality evidence for pain intensity, fatigue, stiffness, and physical function; and moderate-quality evidence for withdrawals and HRQL at completion of the intervention (6 to 24 weeks). With the exception of withdrawals and adverse events, major outcome measures were self-reported and were expressed on a 0 to 100 scale (lower values are best, negative mean differences (MDs)/standardized mean differences (SMDs) indicate improvement). Effects for aerobic exercise versus control were as follows: HRQL: mean 56.08; five studies; N = 372; MD -7.89, 95% CI -13.23 to -2.55; absolute improvement of 8% (3% to 13%) and relative improvement of 15% (5% to 24%); pain intensity: mean 65.31; six studies; N = 351; MD -11.06, 95% CI -18.34 to -3.77; absolute improvement of 11% (95% CI 4% to 18%) and relative improvement of 18% (7% to 30%); stiffness: mean 69; one study; N = 143; MD -7.96, 95% CI -14.95 to -0.97; absolute difference in improvement of 8% (1% to 15%) and relative change in improvement of 11.4% (21.4% to 1.4%); physical function: mean 38.32; three studies; N = 246; MD -10.16, 95% CI -15.39 to -4.94; absolute change in improvement of 10% (15% to 5%) and relative change in improvement of 21.9% (33% to 11%); and fatigue: mean 68; three studies; N = 286; MD -6.48, 95% CI -14.33 to 1.38; absolute change in improvement of 6% (12% improvement to 0.3% worse) and relative change in improvement of 8% (16% improvement to 0.4% worse). Pooled analysis resulted in a risk ratio (RR) of moderate quality for withdrawals (17 per 100 and 20 per 100 in control and intervention groups, respectively; eight studies; N = 456; RR 1.25, 95%CI 0.89 to 1.77; absolute change of 5% more withdrawals with exercise (3% fewer to 12% more).Three trials provided low-quality evidence on long-term effects (24 to 208 weeks post intervention) and reported that benefits for pain and function persisted but did not for HRQL or fatigue. Withdrawals were similar, and investigators did not assess stiffness and adverse events.We are uncertain about the effects of one aerobic intervention versus another, as the evidence was of low to very low quality and was derived from single trials only, precluding meta-analyses. Similarly, we are uncertain of the effects of aerobic exercise over active controls (ie, education, three studies; stress management training, one study; medication, one study) owing to evidence of low to very low quality provided by single trials. Most studies did not measure adverse events; thus we are uncertain about the risk of adverse events associated with aerobic exercise. When compared with control, moderate-quality evidence indicates that aerobic exercise probably improves HRQL and all-cause withdrawal, and low-quality evidence suggests that aerobic exercise may slightly decrease pain intensity, may slightly improve physical function, and may lead to little difference in fatigue and stiffness. Three of the reported outcomes reached clinical significance (HRQL, physical function, and pain). Long-term effects of aerobic exercise may include little or no difference in pain, physical function, and all-cause withdrawal, and we are uncertain about long-term effects on remaining outcomes. We downgraded the evidence owing to the small number of included trials and participants across trials, and because of issues related to unclear and high risks of bias (performance, selection, and detection biases). Aerobic exercise appears to be well tolerated (similar withdrawal rates across groups), although evidence on adverse events is scarce, so we are uncertain about its safety.

Twitter Demographics

The data shown below were collected from the profiles of 75 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 569 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 569 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 99 17%
Student > Bachelor 93 16%
Student > Ph. D. Student 44 8%
Researcher 41 7%
Student > Postgraduate 33 6%
Other 120 21%
Unknown 139 24%
Readers by discipline Count As %
Medicine and Dentistry 150 26%
Nursing and Health Professions 97 17%
Sports and Recreations 40 7%
Social Sciences 21 4%
Psychology 19 3%
Other 63 11%
Unknown 179 31%

Attention Score in Context

This research output has an Altmetric Attention Score of 100. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2020.
All research outputs
#222,480
of 16,206,035 outputs
Outputs from Cochrane database of systematic reviews
#472
of 11,431 outputs
Outputs of similar age
#7,396
of 270,352 outputs
Outputs of similar age from Cochrane database of systematic reviews
#17
of 257 outputs
Altmetric has tracked 16,206,035 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,431 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.9. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 270,352 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 257 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.