↓ Skip to main content

Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user
googleplus
1 Google+ user

Citations

dimensions_citation
76 Dimensions

Readers on

mendeley
59 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stimulation and inhibition of enzymatic hydrolysis by organosolv lignins as determined by zeta potential and hydrophobicity
Published in
Biotechnology for Biofuels and Bioproducts, June 2017
DOI 10.1186/s13068-017-0853-6
Pubmed ID
Authors

Yang Huang, Shaolong Sun, Chen Huang, Qiang Yong, Thomas Elder, Maobing Tu

Abstract

Lignin typically inhibits enzymatic hydrolysis of cellulosic biomass, but certain organosolv lignins or lignosulfonates enhance enzymatic hydrolysis. The hydrophobic and electrostatic interactions between lignin and cellulases play critical roles in the enzymatic hydrolysis process. However, how to incorporate these two interactions into the consideration of lignin effects has not been investigated. We examined the physicochemical properties and the structures of ethanol organosolv lignins (EOL) from hardwood and softwood and ascertained the association between lignin properties and their inhibitory and stimulatory effects on enzymatic hydrolysis. The zeta potential and hydrophobicity of EOL lignin samples, isolated from organosolv pretreatment of cottonwood (CW), black willow (BW), aspen (AS), eucalyptus (EH), and loblolly pine (LP), were determined and correlated with their effects on enzymatic hydrolysis of Avicel. EOLs from CW, BW, and AS improved the 72 h hydrolysis yield by 8-12%, while EOLs from EH and LP decreased the 72 h hydrolysis yield by 6 and 16%, respectively. The results showed a strong correlation between the 72 h hydrolysis yield with hydrophobicity and zeta potential. The correlation indicated that the hydrophobicity of EOL had a negative effect and the negative zeta potential of EOL had a positive effect. HSQC NMR spectra showed that β-O-4 linkages in lignin react with ethanol to form an α-ethoxylated β-O-4' substructure (A') during organosolv pretreatment. Considerable amounts of C2,6-H2,6 correlation in p-hydroxybenzoate (PB) units were observed for EOL-CW, EOL-BW, and EOL-AS, but not for EOL-EH and EOL-LP. This study revealed that the effect of lignin on enzymatic hydrolysis is a function of both hydrophobic interactions and electrostatic repulsions. The lignin inhibition is controlled by lignin hydrophobicity and the lignin stimulation is governed by the negative zeta potential. The net effect of lignin depends on the combined influence of hydrophobicity and zeta potential. This study has potential implications in biomass pretreatment for the reduction of lignin inhibition by increasing lignin negative zeta potential and decreasing hydrophobicity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 59 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 59 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 19%
Researcher 8 14%
Professor > Associate Professor 4 7%
Student > Bachelor 3 5%
Other 3 5%
Other 8 14%
Unknown 22 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 17%
Chemistry 8 14%
Biochemistry, Genetics and Molecular Biology 4 7%
Engineering 3 5%
Chemical Engineering 2 3%
Other 3 5%
Unknown 29 49%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2017.
All research outputs
#15,173,117
of 25,382,440 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#790
of 1,578 outputs
Outputs of similar age
#171,861
of 329,052 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#32
of 57 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,052 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 35th percentile – i.e., 35% of its contemporaries scored the same or lower than it.