↓ Skip to main content

Evolving mutation rate advances the invasion speed of a sexual species

Overview of attention for article published in BMC Ecology and Evolution, June 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
34 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evolving mutation rate advances the invasion speed of a sexual species
Published in
BMC Ecology and Evolution, June 2017
DOI 10.1186/s12862-017-0998-8
Pubmed ID
Authors

Marleen M. P. Cobben, Oliver Mitesser, Alexander Kubisch

Abstract

Many species are shifting their ranges in response to global climate change. Range expansions are known to have profound effects on the genetic composition of populations. The evolution of dispersal during range expansion increases invasion speed, provided that a species can adapt sufficiently fast to novel local conditions. Genetic diversity at the expanding range border is however depleted due to iterated founder effects. The surprising ability of colonizing species to adapt to novel conditions while being subjected to genetic bottlenecks is termed 'the genetic paradox of invasive species'. Mutational processes have been argued to provide an explanation for this paradox. Mutation rates can evolve, under conditions that favor an increased rate of adaptation, by hitchhiking on beneficial mutations through induced linkage disequilibrium. Here we argue that spatial sorting, iterated founder events, and population structure benefit the build-up and maintenance of such linkage disequilibrium. We investigate if the evolution of mutation rates could play a role in explaining the 'genetic paradox of invasive species' for a sexually reproducing species colonizing a landscape of gradually changing conditions. We use an individual-based model to show the evolutionary increase of mutation rates in sexual populations during range expansion, in coevolution with the dispersal probability. The observed evolution of mutation rate is adaptive and clearly advances invasion speed both through its effect on the evolution of dispersal probability, and the evolution of local adaptation. This also occurs under a variable temperature gradient, and under the assumption of 90% lethal mutations. In this study we show novel consequences of the particular genetic properties of populations under spatial disequilibrium, i.e. the coevolution of dispersal probability and mutation rate, even in a sexual species and under realistic spatial gradients, resulting in faster invasions. The evolution of mutation rates can therefore be added to the list of possible explanations for the 'genetic paradox of invasive species'. We conclude that range expansions and the evolution of mutation rates are in a positive feedback loop, with possibly far-reaching ecological consequences concerning invasiveness and the adaptability of species to novel environmental conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 34 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 34 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 18%
Researcher 6 18%
Student > Doctoral Student 4 12%
Student > Ph. D. Student 3 9%
Lecturer 1 3%
Other 6 18%
Unknown 8 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 35%
Environmental Science 3 9%
Biochemistry, Genetics and Molecular Biology 3 9%
Social Sciences 2 6%
Psychology 2 6%
Other 3 9%
Unknown 9 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 August 2017.
All research outputs
#15,742,933
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#2,638
of 3,714 outputs
Outputs of similar age
#180,887
of 328,359 outputs
Outputs of similar age from BMC Ecology and Evolution
#56
of 75 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,359 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 75 others from the same source and published within six weeks on either side of this one. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.