Title |
De novo transcriptome analysis shows differential expression of genes in salivary glands of edible bird’s nest producing swiftlets
|
---|---|
Published in |
BMC Genomics, July 2017
|
DOI | 10.1186/s12864-017-3861-9 |
Pubmed ID | |
Authors |
Q. H. Looi, H. Amin, I. Aini, M. Zuki, A. R. Omar |
Abstract |
Edible bird's nest (EBN), produced from solidified saliva secretions of specific swiftlet species during the breeding season, is one of the most valuable animal by-products in the world. The composition and medicinal benefits of EBN have been extensively studied, however, genomic and transcriptomic studies of the salivary glands of these birds have not been conducted. The study described the transcriptomes of salivary glands from three swiftlet species (28 samples) generated by RNASeq. A total of 14,835 annotated genes and 428 unmapped genes were cataloged. The current study investigated the genes and pathways that are associated with the development of salivary gland and EBN composition. Differential expression and pathway enrichment analysis indicated that the expression of CREB3L2 and several signaling pathways involved in salivary gland development, namely, the EGFR, BMP, and MAPK signaling pathways, were up-regulated in swiftlets producing white EBN (Aerodramus fuciphagus) and black EBN (Aerodramus maximus) compared with non-EBN-producing swiftlets (Apus affinis). Furthermore, MGAT, an essential gene for the biosynthesis of N-acetylneuraminic acid (sialic acid), was highly expressed in both white- and black-nest swiftlets compared to non-EBN-producing swiftlets. Interspecies comparison between Aerodramus fuciphagus and Aerodramus maximus indicated that the genes involved in N-acetylneuraminic and fatty acid synthesis were up-regulated in Aerodramus fuciphagus, while alanine and aspartate synthesis pathways were up-regulated in Aerodramus maximus. Furthermore, gender-based analysis revealed that N-glycan trimming pathway was significantly up-regulated in male Aerodramus fuciphagus from its natural habitat (cave) compared to their female counterpart. Transcriptomic analysis of salivary glands of different swiftlet species reveal differential expressions of candidate genes that are involved in salivary gland development and in the biosynthesis of various bioactive compounds found in EBN. |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 36 | 100% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Student > Bachelor | 8 | 22% |
Student > Ph. D. Student | 5 | 14% |
Researcher | 5 | 14% |
Student > Doctoral Student | 2 | 6% |
Student > Master | 1 | 3% |
Other | 3 | 8% |
Unknown | 12 | 33% |
Readers by discipline | Count | As % |
---|---|---|
Agricultural and Biological Sciences | 11 | 31% |
Biochemistry, Genetics and Molecular Biology | 3 | 8% |
Computer Science | 2 | 6% |
Engineering | 2 | 6% |
Medicine and Dentistry | 2 | 6% |
Other | 4 | 11% |
Unknown | 12 | 33% |