↓ Skip to main content

Cell Microencapsulation

Overview of attention for book
Cover of 'Cell Microencapsulation'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Cell Microencapsulation
  3. Altmetric Badge
    Chapter 2 Applications of Cell Microencapsulation
  4. Altmetric Badge
    Chapter 3 Cell Microencapsulation: Dripping Methods
  5. Altmetric Badge
    Chapter 4 Field Effect Microparticle Generation for Cell Microencapsulation
  6. Altmetric Badge
    Chapter 5 Microfluidic Approach to Cell Microencapsulation
  7. Altmetric Badge
    Chapter 6 Polymeric Materials for Cell Microencapsulation
  8. Altmetric Badge
    Chapter 7 Polymeric Materials for Perm-Selective Coating of Alginate Microbeads
  9. Altmetric Badge
    Chapter 8 Determination of the Mechanical Strength of Microcapsules
  10. Altmetric Badge
    Chapter 9 The Diffusive Properties of Hydrogel Microcapsules for Cell Encapsulation
  11. Altmetric Badge
    Chapter 10 Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems
  12. Altmetric Badge
    Chapter 11 Noninvasive Tracking of Alginate-Microencapsulated Cells
  13. Altmetric Badge
    Chapter 12 Retrieval of Microencapsulated Islet Grafts for Post-transplant Evaluation
  14. Altmetric Badge
    Chapter 13 A Method of Porcine Pancreatic Islet Isolation for Microencapsulation
  15. Altmetric Badge
    Chapter 14 Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation
  16. Altmetric Badge
    Chapter 15 Preparation and Characterization of Alginate–Chitosan Microcapsule for Hepatocyte Culture
  17. Altmetric Badge
    Chapter 16 Use of Flow Focusing Technique for Microencapsulation of Myoblasts
  18. Altmetric Badge
    Chapter 17 Alginate Microbeads for Cell and Protein Delivery
  19. Altmetric Badge
    Chapter 18 Compartmentalization of Two Cell Types in Multilayered Alginate Microcapsules
  20. Altmetric Badge
    Chapter 19 Primary Choroid Plexus Tissue for Use in Cellular Therapy
  21. Altmetric Badge
    Chapter 20 Cell Microencapsulation
  22. Altmetric Badge
    Chapter 21 Microencapsulated Cells for Cancer Therapy
  23. Altmetric Badge
    Chapter 22 Microencapsulation of Bacterial Cells by Emulsion Technique for Probiotic Application
  24. Altmetric Badge
    Chapter 23 Microencapsulation of Islets for the Treatment of Type 1 Diabetes Mellitus (T1D)
  25. Altmetric Badge
    Chapter 24 Cell Microencapsulation
  26. Altmetric Badge
    Chapter 25 Microencapsulation in Clinical Islet Xenotransplantation
  27. Altmetric Badge
    Chapter 26 Methods for Microencapsulated Porcine Islet Production
  28. Altmetric Badge
    Chapter 27 Microencapsulation of Parathyroid Cells for the Treatment of Hypoparathyroidism
Attention for Chapter 27: Microencapsulation of Parathyroid Cells for the Treatment of Hypoparathyroidism
Altmetric Badge

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Microencapsulation of Parathyroid Cells for the Treatment of Hypoparathyroidism
Chapter number 27
Book title
Cell Microencapsulation
Published in
Methods in molecular biology, January 2017
DOI 10.1007/978-1-4939-6364-5_27
Pubmed ID
Book ISBNs
978-1-4939-6362-1, 978-1-4939-6364-5
Authors

Patricio Cabané Toledo M.D., Ph.D., F.A.C.S., Ricardo L. Rossi, Pablo Caviedes M.D., Ph.D., Patricio Cabané Toledo, Pablo Caviedes

Editors

Emmanuel C. Opara

Abstract

Cell encapsulation is an alternative to avoid rejection of grafted tissue, thus bringing an interesting alternative in cell therapy. It is particularly relevant in ailments where only the implant of small quantities of tissues is warranted. In such circumstances, the use of immunosuppressive therapy in patients implanted with tissues from donors is debatable, yet unavoidable at present in order to prevent rejection and/or sensitization of the host to the tissue, in turn jeopardizing the success of successive implants. Hence, a new line of thought, which aims to provide an immunoprivileged site for the grafted tissue, while at the same time insure its nutrition, as well as its survival and continued function, appears as a most attractive possibility. To achieve these goals, cells or tissues harvested for transplant could be encapsulated in biologically compatible matrices. Among the matrices currently in existence, sodium alginate is the most widely used polymer for tissue encapsulation.In the present chapter, we present a technique used to encapsulate parathyroid tissue, for use as cell transplant therapy in patients with secondary hypoparathyroidism. With this procedure, implanted tissue survives and remains functional for up to 18 months.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 25%
Researcher 2 17%
Other 1 8%
Student > Master 1 8%
Student > Ph. D. Student 1 8%
Other 0 0%
Unknown 4 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 33%
Medicine and Dentistry 2 17%
Agricultural and Biological Sciences 1 8%
Pharmacology, Toxicology and Pharmaceutical Science 1 8%
Unknown 4 33%