↓ Skip to main content

Interventions to prevent occupational noise-induced hearing loss

Overview of attention for article published in Cochrane database of systematic reviews, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (90th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

1 blog
18 tweeters
6 Facebook pages
3 Wikipedia pages


4 Dimensions

Readers on

146 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Interventions to prevent occupational noise-induced hearing loss
Published in
Cochrane database of systematic reviews, July 2017
DOI 10.1002/14651858.cd006396.pub4
Pubmed ID

Christina Tikka, Jos H Verbeek, Erik Kateman, Thais C Morata, Wouter A Dreschler, Silvia Ferrite


This is the second update of a Cochrane Review originally published in 2009. Millions of workers worldwide are exposed to noise levels that increase their risk of hearing disorders. There is uncertainty about the effectiveness of hearing loss prevention interventions. To assess the effectiveness of non-pharmaceutical interventions for preventing occupational noise exposure or occupational hearing loss compared to no intervention or alternative interventions. We searched the CENTRAL; PubMed; Embase; CINAHL; Web of Science; BIOSIS Previews; Cambridge Scientific Abstracts; and OSH UPDATE to 3 October 2016. We included randomised controlled trials (RCT), controlled before-after studies (CBA) and interrupted time-series (ITS) of non-clinical interventions under field conditions among workers to prevent or reduce noise exposure and hearing loss. We also collected uncontrolled case studies of engineering controls about the effect on noise exposure. Two authors independently assessed study eligibility and risk of bias and extracted data. We categorised interventions as engineering controls, administrative controls, personal hearing protection devices, and hearing surveillance. We included 29 studies. One study evaluated legislation to reduce noise exposure in a 12-year time-series analysis but there were no controlled studies on engineering controls for noise exposure. Eleven studies with 3725 participants evaluated effects of personal hearing protection devices and 17 studies with 84,028 participants evaluated effects of hearing loss prevention programmes (HLPPs). Effects on noise exposure Engineering interventions following legislationOne ITS study found that new legislation in the mining industry reduced the median personal noise exposure dose in underground coal mining by 27.7 percentage points (95% confidence interval (CI) -36.1 to -19.3 percentage points) immediately after the implementation of stricter legislation. This roughly translates to a 4.5 dB(A) decrease in noise level. The intervention was associated with a favourable but statistically non-significant downward trend in time of the noise dose of -2.1 percentage points per year (95% CI -4.9 to 0.7, 4 year follow-up, very low-quality evidence). Engineering intervention case studiesWe found 12 studies that described 107 uncontrolled case studies of immediate reductions in noise levels of machinery ranging from 11.1 to 19.7 dB(A) as a result of purchasing new equipment, segregating noise sources or installing panels or curtains around sources. However, the studies lacked long-term follow-up and dose measurements of workers, and we did not use these studies for our conclusions. Hearing protection devicesIn general hearing protection devices reduced noise exposure on average by about 20 dB(A) in one RCT and three CBAs (57 participants, low-quality evidence). Two RCTs showed that, with instructions for insertion, the attenuation of noise by earplugs was 8.59 dB better (95% CI 6.92 dB to 10.25 dB) compared to no instruction (2 RCTs, 140 participants, moderate-quality evidence). Administrative controls: information and noise exposure feedbackOn-site training sessions did not have an effect on personal noise-exposure levels compared to information only in one cluster-RCT after four months' follow-up (mean difference (MD) 0.14 dB; 95% CI -2.66 to 2.38). Another arm of the same study found that personal noise exposure information had no effect on noise levels (MD 0.30 dB(A), 95% CI -2.31 to 2.91) compared to no such information (176 participants, low-quality evidence). Effects on hearing loss Hearing protection devicesIn two studies the authors compared the effect of different devices on temporary threshold shifts at short-term follow-up but reported insufficient data for analysis. In two CBA studies the authors found no difference in hearing loss from noise exposure above 89 dB(A) between muffs and earplugs at long-term follow-up (OR 0.8, 95% CI 0.63 to 1.03 ), very low-quality evidence). Authors of another CBA study found that wearing hearing protection more often resulted in less hearing loss at very long-term follow-up (very low-quality evidence). Combination of interventions: hearing loss prevention programmesOne cluster-RCT found no difference in hearing loss at three- or 16-year follow-up between an intensive HLPP for agricultural students and audiometry only. One CBA study found no reduction of the rate of hearing loss (MD -0.82 dB per year (95% CI -1.86 to 0.22) for a HLPP that provided regular personal noise exposure information compared to a programme without this information.There was very-low-quality evidence in four very long-term studies, that better use of hearing protection devices as part of a HLPP decreased the risk of hearing loss compared to less well used hearing protection in HLPPs (OR 0.40, 95% CI 0.23 to 0.69). Other aspects of the HLPP such as training and education of workers or engineering controls did not show a similar effect.In three long-term CBA studies, workers in a HLPP had a statistically non-significant 1.8 dB (95% CI -0.6 to 4.2) greater hearing loss at 4 kHz than non-exposed workers and the confidence interval includes the 4.2 dB which is the level of hearing loss resulting from 5 years of exposure to 85 dB(A). In addition, of three other CBA studies that could not be included in the meta-analysis, two showed an increased risk of hearing loss in spite of the protection of a HLPP compared to non-exposed workers and one CBA did not. There is very low-quality evidence that implementation of stricter legislation can reduce noise levels in workplaces. Controlled studies of other engineering control interventions in the field have not been conducted. There is moderate-quality evidence that training of proper insertion of earplugs significantly reduces noise exposure at short-term follow-up but long-term follow-up is still needed.There is very low-quality evidence that the better use of hearing protection devices as part of HLPPs reduces the risk of hearing loss, whereas for other programme components of HLPPs we did not find such an effect. The absence of conclusive evidence should not be interpreted as evidence of lack of effectiveness. Rather, it means that further research is very likely to have an important impact.

Twitter Demographics

The data shown below were collected from the profiles of 18 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 146 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 146 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 36 25%
Unspecified 30 21%
Student > Master 29 20%
Student > Ph. D. Student 13 9%
Student > Bachelor 11 8%
Other 27 18%
Readers by discipline Count As %
Medicine and Dentistry 52 36%
Unspecified 36 25%
Nursing and Health Professions 19 13%
Psychology 8 5%
Social Sciences 7 5%
Other 24 16%

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 February 2019.
All research outputs
of 12,545,170 outputs
Outputs from Cochrane database of systematic reviews
of 10,351 outputs
Outputs of similar age
of 260,870 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 252 outputs
Altmetric has tracked 12,545,170 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,351 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.2. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 260,870 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 90% of its contemporaries.
We're also able to compare this research output to 252 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.