↓ Skip to main content

Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats

Overview of attention for article published in Particle and Fibre Toxicology, July 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Mentioned by

news
1 news outlet
twitter
2 X users

Citations

dimensions_citation
60 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats
Published in
Particle and Fibre Toxicology, July 2017
DOI 10.1186/s12989-017-0204-6
Pubmed ID
Authors

Daniela Schwotzer, Heinrich Ernst, Dirk Schaudien, Heiko Kock, Gerhard Pohlmann, Clemens Dasenbrock, Otto Creutzenberg

Abstract

Nanomaterials like cerium oxide and barium sulfate are frequently processed in industrial and consumer products and exposure of humans and other organisms is likely. Generally less information is given on health effects and toxicity, especially regarding long-term exposure to low nanoparticle doses. Since inhalation is still the major route of uptake the present study focused on pulmonary effects of CeO2NM-212 (0.1, 0.3, 1.0, 3.0 mg/m(3)) and BaSO4NM-220 nanoparticles (50.0 mg/m(3)) in a 90-day exposure setup. To define particle-related effects and potential mechanisms of action, observations in histopathology, bronchoalveolar lavage and immunohistochemistry were linked to pulmonary deposition and clearance rates. This further allows evaluation of potential overload related effects. Lung burden values increased with increasing nanoparticle dose levels and ongoing exposure. At higher doses, cerium clearance was impaired, suggesting lung overload. Barium elimination was extremely rapid and without any signs of overload. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation with increasing severity and post-exposure persistency for CeO2. Also, marker levels for genotoxicity and cell proliferation were significantly increased. BaSO4 showed less inflammation or persistency of effects and particularly affected the nasal cavity. CeO2 nanoparticles penetrate the alveolar space and affect the respiratory tract after inhalation mainly in terms of inflammation. Effects at low dose levels and post-exposure persistency suggest potential long-term effects and a notable relevance for human health. The generated data might be useful to improve nanoparticle risk assessment and threshold value generation. Mechanistic investigations at conditions of non-overload and absent inflammation should be further investigated in future studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 18%
Researcher 8 16%
Student > Bachelor 7 14%
Student > Master 4 8%
Other 3 6%
Other 12 24%
Unknown 8 16%
Readers by discipline Count As %
Chemistry 7 14%
Medicine and Dentistry 4 8%
Nursing and Health Professions 3 6%
Agricultural and Biological Sciences 3 6%
Biochemistry, Genetics and Molecular Biology 3 6%
Other 17 33%
Unknown 14 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2020.
All research outputs
#4,562,211
of 22,988,380 outputs
Outputs from Particle and Fibre Toxicology
#159
of 561 outputs
Outputs of similar age
#79,452
of 312,615 outputs
Outputs of similar age from Particle and Fibre Toxicology
#3
of 16 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. Compared to these this one has done well and is in the 79th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 561 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.3. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,615 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 16 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.