↓ Skip to main content

Development of the Cetacean Nasal Skull

Overview of attention for book
Overall attention for this book and its chapters
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)

Mentioned by

2 tweeters
1 Wikipedia page


32 Dimensions

Readers on

16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Development of the Cetacean Nasal Skull
Published by
Advances in anatomy embryology and cell biology, January 1999
DOI 10.1007/978-3-642-58612-5
Pubmed ID
978-3-54-064996-0, 978-3-64-258612-5

M. Klima, Klima, M.


The adaptation of cetaceans to aquatic life habits is reflected, in their nasal region, in three marked changes from the original relations found in land mammals. These changes include (1) the loss of the sense of smell, (2) translocation of the nostrils from the tip of the rostrum to the vertex of the head, and (3) elongation of the anterior head to form a rostrum protruding far towards anterior. The morphogenetic processes taking place during embryogenesis of the nasal skull play a decisive part in the development of all these changes. The lateral parts of the embryonic nasal capsule, encompassing the nasal passages, change their position from horizontal to vertical. At the same time, the structures of the original nasal floor (the solum nasi) are shifted in front of the nasal passages towards the rostrum. The structures of the original nasal roof (the tectum nasi) and of the nasal side wall (the paries nasi) are translocated behind the nasal passages towards the neurocranium. The medial nasal septum (the septum nasi) mostly loses its connection to the nasal passages and is produced into a point protruding far towards anterior. The transformed embryonic nasal skull of the Cetacea can be divided into three sections: 1. The median structures. These include the cartilaginous structures, viz., the rostrum nasi, the septum interorbitale and the spina mesethmoidalis, which are accompanied by the dermal bones, the vomer and the praemaxillare. In adult cetaceans the rostrum nasi is mostly preserved as a robust cartilage of the skull, which may possibly serve as a sound transmitting structure of the sonar system, or it may be responsible for the sensing of water streams and vibrations. 2. The posterior side wall structures. These include the following cartilaginous structures that are mostly heavily reduced or mutually fused: the cupula nasi anterior, the tectum nasi, the lamina cribrosa, the paries nasi, the commissura orbitonasalis, the cupula nasi posterior, the processus paraseptalis posterior, the crista semicircularis, the frontoturbinale, the ethmoturbinale I and the maxilloturbinale. The cartilaginous structures are largely accompanied by the dermal bone, the maxillare. Of these embryonic elements, very little is preserved in adult cetaceans. The cartilages of the cupula nasi anterior form the variable skeleton around the nostrils. In Physeter the tectum nasi forms a very long cartilaginous bar that passes through the whole giant anterior head of the sperm whale as a structure accompanying the left nasal passage. 3. The anterior side wall structures. These include the cartilaginous structures, viz., the cartilago ductus nasopalatini, the cartilago paraseptalis, the processus lateralis ventralis and the lamina transversalis anterior, accompanied by the dermal bones, the praemaxillare and the vomer. These structures participate in the formation of the robust rostrum of the cetacean skull, and they are partly preserved even in adults in the form of the isolated ossa pararostralia (the Meckelian ossicles). The comparison of morphogeny of the nasal skull has also made it possible to draw certain conclusions on the phylogeny and systematics of Cetacea. Already the earliest embryonic stages permit us to discern weighty transformations of the original nasal skull of land mammals. These transformations are common to all embryos examined. This fact indicates a common origin of all Cetacea, which thus form a single monophyletic order. However, later embryonic stages show some different modifications of the nasal capsule according to which at least three major groups can be distinguished within the order Cetacea, probably ranking as superfamilies: Balaenopteroidea, Physeteroidea and Delphinoidea. Our observations, being in full accordance with other morphological, and embryological, as well as molecular biological results, suggest that the division of the order Cetacea into two suborders, Mysticeti and Odontoceti, is no longer tenable.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 6%
United States 1 6%
Unknown 14 88%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Ph. D. Student 3 19%
Other 2 13%
Student > Master 2 13%
Professor 1 6%
Other 2 13%
Unknown 2 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 56%
Environmental Science 1 6%
Biochemistry, Genetics and Molecular Biology 1 6%
Psychology 1 6%
Energy 1 6%
Other 1 6%
Unknown 2 13%

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 May 2020.
All research outputs
of 15,269,184 outputs
Outputs from Advances in anatomy embryology and cell biology
of 62 outputs
Outputs of similar age
of 265,748 outputs
Outputs of similar age from Advances in anatomy embryology and cell biology
of 1 outputs
Altmetric has tracked 15,269,184 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 62 research outputs from this source. They receive a mean Attention Score of 1.8. This one has done well, scoring higher than 87% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,748 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them