↓ Skip to main content

Identification and characterization of the antiplasmodial activity of Hsp90 inhibitors

Overview of attention for article published in Malaria Journal, July 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
67 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification and characterization of the antiplasmodial activity of Hsp90 inhibitors
Published in
Malaria Journal, July 2017
DOI 10.1186/s12936-017-1940-7
Pubmed ID
Authors

Claribel Murillo-Solano, Chunmin Dong, Cecilia G. Sanchez, Juan C. Pizarro

Abstract

The recent reduction in mortality due to malaria is being threatened by the appearance of Plasmodium falciparum parasites that are resistant to artemisinin in Southeast Asia. To limit the impact of resistant parasites and their spread across the world, there is a need to validate anti-malarial drug targets and identify new leads that will serve as foundations for future drug development programmes targeting malaria. Towards that end, the antiplasmodial potential of several Hsp90 inhibitors was characterized. Because, the Hsp90 chaperone has been suggested as a good drug target against multiple parasitic infections including malaria. Chemically diverse sets of Hsp90 inhibitors, evaluated in clinical trials as anti-cancer agents, were tested against the malaria parasite. Most of the compounds showed strong antiplasmodial activity in growth inhibition assays against chloroquine sensitive and resistant strains. There was a good agreement between the compound in vitro anti-parasitic activity and their affinity against the Plasmodium chaperone. The two most potent Hsp90 inhibitors also showed cytocidal activity against two P. falciparum strains. Their antiplasmodial activity affected all parasite forms during the malaria blood cycle. However, the compounds activity against the parasite showed no synergy when combined with anti-malarial drugs, like chloroquine or DHA. The Hsp90 inhibitors anti-parasitic activity correlates with their affinity to their predicted target the P. falciparum chaperone Hsp90. However, the most effective compounds also showed high affinity for a close homologue, Grp94. This association points to a mode of action for Hsp90 inhibitors that correlate compound efficacy with multi-target engagement. Besides their ability to limit parasite replication, two compounds also significantly impacted P. falciparum viability in vitro. Finally, a structural analysis suggests that the best hit represents a promising scaffold to develop parasite specific leads according. The results shown that Hsp90 inhibitors are lethal against the malaria parasite. The correlation between biochemical and in vitro data strongly supports Hsp90 as a drug target against the malaria parasite. Furthermore, at least one Hsp90 inhibitor developed as anticancer therapeutics could serve as starting point to generate P. falciparum-specific lead compounds.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 67 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 67 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 16%
Student > Master 10 15%
Student > Bachelor 5 7%
Researcher 5 7%
Student > Doctoral Student 3 4%
Other 7 10%
Unknown 26 39%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 8 12%
Medicine and Dentistry 8 12%
Biochemistry, Genetics and Molecular Biology 7 10%
Agricultural and Biological Sciences 4 6%
Chemistry 4 6%
Other 9 13%
Unknown 27 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 July 2017.
All research outputs
#14,356,760
of 22,990,068 outputs
Outputs from Malaria Journal
#3,986
of 5,591 outputs
Outputs of similar age
#175,640
of 315,216 outputs
Outputs of similar age from Malaria Journal
#109
of 120 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,591 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,216 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one is in the 4th percentile – i.e., 4% of its contemporaries scored the same or lower than it.