↓ Skip to main content

Plant Stress Tolerance

Overview of attention for book
Cover of 'Plant Stress Tolerance'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA?
  3. Altmetric Badge
    Chapter 2 The Fundamental Role of Reactive Oxygen Species in Plant Stress Response
  4. Altmetric Badge
    Chapter 3 The Role of Long Noncoding RNAs in Plant Stress Tolerance
  5. Altmetric Badge
    Chapter 4 Toward a Resilient, Functional Microbiome: Drought Tolerance-Alleviating Microbes for Sustainable Agriculture
  6. Altmetric Badge
    Chapter 5 Mining and Quantifying In Vivo Molecular Interactions in Abiotic Stress Acclimation
  7. Altmetric Badge
    Chapter 6 Generation of a Stress-Inducible Luminescent Arabidopsis and Its Use in Genetic Screening for Stress-Responsive Gene Deregulation Mutants
  8. Altmetric Badge
    Chapter 7 Detection of Differential DNA Methylation Under Stress Conditions Using Bisulfite Sequence Analysis
  9. Altmetric Badge
    Chapter 8 ChIP-Seq Analysis for Identifying Genome-Wide Histone Modifications Associated with Stress-Responsive Genes in Plants
  10. Altmetric Badge
    Chapter 9 Isolation of Polysomal RNA for Analyzing Stress-Responsive Genes Regulated at the Translational Level in Plants
  11. Altmetric Badge
    Chapter 10 Global Proteomic Profiling and Identification of Stress-Responsive Proteins Using Two-Dimensional Gel Electrophoresis
  12. Altmetric Badge
    Chapter 11 Phosphoproteomics Analysis for Probing Plant Stress Tolerance
  13. Altmetric Badge
    Chapter 12 Probing Posttranslational Redox Modifications
  14. Altmetric Badge
    Chapter 13 Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants
  15. Altmetric Badge
    Chapter 14 Determination of Enzymes Associated with Sulfite Toxicity in Plants: Kinetic Assays for SO, APR, SiR, and In-Gel SiR Activity
  16. Altmetric Badge
    Chapter 15 Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants
  17. Altmetric Badge
    Chapter 16 Determining Glutathione Levels in Plants
  18. Altmetric Badge
    Chapter 17 Porous Graphitic Carbon Liquid Chromatography–Mass Spectrometry Analysis of Drought Stress-Responsive Raffinose Family Oligosaccharides in Plant Tissues
  19. Altmetric Badge
    Chapter 18 Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses
  20. Altmetric Badge
    Chapter 19 Detection of Free Polyamines in Plants Subjected to Abiotic Stresses by High-Performance Liquid Chromatography (HPLC)
  21. Altmetric Badge
    Chapter 20 Determination of Polyamines by Dansylation, Benzoylation, and Capillary Electrophoresis
  22. Altmetric Badge
    Chapter 21 Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response
  23. Altmetric Badge
    Chapter 22 Silencing of Stress-Regulated miRNAs in Plants by Short Tandem Target Mimic (STTM) Approach
  24. Altmetric Badge
    Chapter 23 Rhizosphere Sampling Protocols for Microbiome (16S/18S/ITS rRNA) Library Preparation and Enrichment for the Isolation of Drought Tolerance-Promoting Microbes
Attention for Chapter 2: The Fundamental Role of Reactive Oxygen Species in Plant Stress Response
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
The Fundamental Role of Reactive Oxygen Species in Plant Stress Response
Chapter number 2
Book title
Plant Stress Tolerance
Published in
Methods in molecular biology, July 2017
DOI 10.1007/978-1-4939-7136-7_2
Pubmed ID
Book ISBNs
978-1-4939-7134-3, 978-1-4939-7136-7
Authors

Michael Liebthal, Karl-Josef Dietz, Liebthal, Michael, Dietz, Karl-Josef

Abstract

Chemical, physical, and biotic factors continuously vary in the natural environment. Such parameters are considered as stressors if the magnitude of their change exceeds the current acclimation norm of the plant. Activation of genetic programs allows for conditional expansion of the acclimation norm and depends on specific sensing mechanisms, intracellular communication, and regulation. The redox and reactive oxygen species (ROS) network plays a fundamental role in directing the acclimation response. These highly reactive compounds like H2O2 are generated and scavenged under normal conditions and participate in realizing a basal acclimation level. Spatial and temporal changes in ROS levels and redox state provide valuable information for regulating epigenetic processes, transcription factors (TF), translation, protein turnover, metabolic pathways, and cross-feed, e.g., into hormone-, NO-, or Ca(2+)-dependent signaling pathways. At elevated ROS levels uncontrolled oxidation reactions compromise cell functions, impair fitness and yield, and in extreme cases may cause plant death.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 25%
Student > Bachelor 2 17%
Student > Ph. D. Student 1 8%
Other 1 8%
Professor > Associate Professor 1 8%
Other 1 8%
Unknown 3 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 2 17%
Agricultural and Biological Sciences 2 17%
Business, Management and Accounting 1 8%
Engineering 1 8%
Design 1 8%
Other 0 0%
Unknown 5 42%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 August 2017.
All research outputs
#14,293,949
of 22,990,068 outputs
Outputs from Methods in molecular biology
#4,166
of 13,150 outputs
Outputs of similar age
#175,113
of 316,114 outputs
Outputs of similar age from Methods in molecular biology
#62
of 249 outputs
Altmetric has tracked 22,990,068 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,150 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 316,114 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 249 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.